

PUBLIC

Code Assessment

of the Fast Bridge

Smart Contracts

September 16, 2025

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 11

4 Terminology 12

5 Open Findings 13

6 Resolved Findings 14

7 Informational 21

8 Notes 24

Curve - Fast Bridge - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear Curve Team,

Thank you for trusting us to help Curve with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of Fast Bridge according to
Scope to support you in forming an opinion on their security risks.

Curve implements Fast Bridge service leveraging LayerZero to allow users to quickly bridge crvUSD from
Optimism or Arbitrum to Ethereum, without having to wait for the standard fault proof period.

The most critical subjects covered in our audit are fault proof risks assessment, integration with
LayerZero and the native bridges, and functional correctness. Security regarding all the aforementioned
subjects is high, we highlight the risk associated with the fast bridge in the informational issue Risk linked
to the fast bridge.

The general subjects covered are integration with the existing Curve infrastructure, gas efficiency, and
limit enforcement. Security regarding all the aforementioned subjects is high.

In summary, we find that the codebase provides a high level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered, and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

Curve - Fast Bridge - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 3

• Code Corrected 3

Curve - Fast Bridge - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the Fast Bridge repository based on the
documentation files. The table below indicates the code versions relevant to this report and when they
were received.

V Date Commit Hash Note

1 08 August 2025 61775532cbbdfe097fda1ec6f1e66547c7978cfc Initial Version

2 25 August 2025 e94c92e347c4db45f28a0f231afcb5f350d58096 Fixes

3 12 September 2025 a4455d5254e6fde8b3b4c3880db7c9729960463b Final Version

For the Vyper smart contracts, the compiler version 0.4.3 was chosen.

The following contracts were included in the scope of the assessment:

contracts/bridgers/ArbitrumBridger.vy
contracts/bridgers/IBridger.vyi
contracts/bridgers/OptimismBridger.vy
contracts/FastBridgeL2.vy
contracts/FastBridgeVault.vy
contracts/messengers/L2MessengerLZ.vy
contracts/messengers/VaultMessengerLZ.vy

2.1.1 Excluded from scope
Anything not listed in scope of the assessment is considered out of scope. This includes tests, scripts
and external libraries.

2.2 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Curve offers a Fast Bridge service to allow users to quickly bridge crvUSD from Optimism or Arbitrum to
Ethereum, without having to wait for the standard fault proof period.

The architecture can be visualized as follows:

Curve - Fast Bridge - ChainSecurity - © Decentralized Security AG 5

https://github.com/curvefi/fast-bridge/tree/61775532cbbdfe097fda1ec6f1e66547c7978cfc
https://github.com/curvefi/fast-bridge/tree/e94c92e347c4db45f28a0f231afcb5f350d58096
https://github.com/curvefi/fast-bridge/tree/a4455d5254e6fde8b3b4c3880db7c9729960463b
https://chainsecurity.com

EthereumOptimism

FastBridgeL2

Bridge

Messenger

FastBridge
Vault

Vault
MessengerLZ

crvUSD

crvUSD

crvUSD

Endpoint

Endpoint

crvUSD
Optimism Native Bridge

crvUSD

Arbitrum

FastBridgeL2

Bridge

Messenger

crvUSD

crvUSD

crvUSD

Endpoint

Arbitrum Native Bridge
crvUSD

Layer Zero

bridge

bridge

bridge

bridge

send

send

initiate_fast_bridge

initia
te_fast

_bridg
e

lzReceive mint

2.2.1 FastBridgeL2 Contract
The FastBridgeL2 contract is the main contract enabling fast bridging of crvUSD from Optimism or
Arbitrum to Ethereum, subject to a daily limit per chain. The entry point is the bridge function, which
only permits bridging crvUSD. Requested amounts are capped to the remaining daily limit, but users can
specify a minimum amount to enforce.

If enough funds are provided to cover the bridging costs, the function will:

1. Call the L2 bridger contract, which uses the chain's native bridge to transfer tokens (the native
bridge involves a long fault-proof delay).

2. Send a LayerZero message to Ethereum to enable the fast bridge, allowing immediate receipt of
crvUSD on Ethereum if the FastBridgeVault has sufficient funds.

Restricted Functions

The following administrative setter functions can only be called by the owner of the contract:

• set_min_amount: Sets the minimum amount of crvUSD that must be bridged in one
transaction.

• set_limit: Sets the daily limit of crvUSD that can be bridged by all users.

• set_bridger: Sets the bridger contract.

• set_messenger: Sets the LayerZero messenger contract.

2.2.2 The Bridger contracts
The system supports two bridger contracts:

• OptimismBridger for Optimism

• ArbitrumBridger for Arbitrum

Both bridgers can be called directly or via FastBridgeL2 to initiate the standard native bridge from L2
to Ethereum; they are unpermissioned and usable by anyone.

Curve - Fast Bridge - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

Their main entry is the bridge function. Implementations differ per L2 but perform the same action:
initiate the chain's native bridge to transfer crvUSD to Ethereum.

• The OptimismBridger calls bridgeERC20To on the L2StandardBridge after burning tokens.

• The ArbitrumBridger calls outboundTransfer on the L2ERC20Gateway after burning tokens.

2.2.3 The L2MessengerLZ
After initiating the native bridge, the FastBridgeL2 calls initiate_fast_bridge on the
L2MessengerLZ contract. Only FastBridgeL2 may call this function; it sends the
VaultMessengerLZ on Ethereum a message containing the amount and recipient to indicate the native
bridge is in flight so the recipient may receive tokens early.

Restricted functions:

Except for owner-only LayerZero OApp management functions, the following functions are owner-only:

• set_fast_bridge_l2: Sets the address of the FastBridgeL2 contract.

• set_gas_limit: Sets the gas limit to be enforced when delivering messages to Ethereum.

2.2.4 The FastBridgeVault
On Ethereum, Optimism's and Arbitrum's native bridges eventually release crvUSD to the
FastBridgeVault contract (via L1ERC20Gateway and L1StandardBridge).

The FastBridgeVault holds bridged tokens until they can be minted to users.

The mint() function allows transferring crvUSD from the vault to a recipient if the recipient has an
allocated balance. If called by an allowed minter (MINTER_ROLE), the contract attempts to transfer the
requested amount immediately if it has sufficient balance; otherwise it allocates the amount to the
recipient's vault balance for later withdrawal.

Restricted functions:

The following functions are restricted and can only be called by authorized roles:

• set_killed(): Kill the mint() functionality for a specific msg.sender or globally. Only callable
by the KILLER_ROLE.

• set_fee(): Set the fee for minting crvUSD. Only callable by the DEFAULT_ADMIN_ROLE.

• set_fee_receiver(): Set the address that will receive fees from minting crvUSD. Only callable
by the DEFAULT_ADMIN_ROLE.

• recover(): Recover tokens sent to the contract by mistake. Only callable by the
DEFAULT_ADMIN_ROLE.

2.2.5 The VaultMessengerLZ
If a fast bridge was initiated, Ethereum's LZ endpoint will call VaultMessengerLZ.lzReceive. The
contract holding MINTER_ROLE in the FastBridgeVault calls mint to mint or allocate the specified
crvUSD to the recipient.

Restricted functions:

Except for owner-only LayerZero OApp management functions, the owner can call set_vault() to
update the Vault address.

2.2.6 Receiving crvUSD on Ethereum
This section explains receiving crvUSD on Ethereum, partly described above.

Curve - Fast Bridge - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

The FastBridgeVault receives crvUSD from native bridges and mints to users, but native bridging can
take about one week. To provide funds earlier, VaultMessengerLZ releases funds upon receiving a
LayerZero message.

Since this requires available liquidity, Curve's ControllerFactory is expected to set a debt ceiling to
the vault, by effectively minting unbacked tokens to the vault.

Thus availability depends not only on L2 daily limits but also on the vault's minting capability (debt
ceilings).

If the vault cannot immediately release funds, it records the user's outstanding amount; users can call
mint to withdraw once liquidity is available.

If the Curve DAO reduces the vault's debt ceiling, the schedule_rug function can be used to prevent
withdrawals until the contract repays (burns) its debt.

2.2.7 Changelog
In Version 2 and 3 of the report, only fixes for findings raised by this review were implemented.

2.3 Trust Model
The Fast Bridge system involves several roles and trust relationships across multiple components:

2.3.1 General Architecture

• The FastBridgeL2, OptimismBridger and L2MessengerLZ are expected to be deployed on
Optimism

• The FastBridgeL2, ArbitrumBridger and L2MessengerLZ are expected to be deployed on
Arbitrum

• The FastBridgeVault and VaultMessengerLZ are expected to be deployed on Ethereum
mainnet

• On every chain, crvUSD is compliant with the ERC20 standard.

• On Optimism, crvUSD is the token deployed at
0xc52d7f23a2e460248db6ee192cb23dd12bddcbf6

• On Arbitrum, crvUSD is the token deployed at
0x498bf2b1e120fed3ad3d42ea2165e9b73f99c1e5

• The VAULT address of the L2's FastBridgeL2 contracts is expected to be set to the
FastBridgeVault address on Ethereum mainnet.

• The VAULT_EID of the L2's L2MessengerLZ contracts is expected to be set to the Ethereum
Endpoint ID.

• Each of the L2's L2MessengerLZ contracts are expected to have exactly one peer; the
corresponding L1 VaultMessengerLZ contract.

• The VaultMessengerLZ contracts are expected to have one peer for each of the L2's
L2MessengerLZ contracts (as many peers as Rollup chains).

• The only address having MINTER_ROLE in the FastBridgeVault is the VaultMessengerLZ.

2.3.2 Roles and Trust Levels
System Admin

• Who:

• FastBridgeL2, VaultMessengerLZ, and L2MessengerLZ owner

Curve - Fast Bridge - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

• VaultMessengerLZ and L2MessengerLZ delegates

• Trust Level: Fully trusted

• Permissions: Can modify bridging parameters (min_amount, limit), replace bridger/messenger
contracts, update LayerZero configurations

• Risk: Complete control over L2 bridging operations, could redirect funds or disable the system

Vault Admin

• Who: FastBridgeVault's DEFAULT_ADMIN_ROLE

• Trust Level: Fully trusted

• Permissions: Can set fees, fee receiver, grant/revoke minter and killer roles, recover tokens

• Risk: Can drain the vault through token recovery, manipulate fees, control minting permissions

Emergency Killer

• Who: FastBridgeVault's KILLER_ROLE

• Trust Level: Partially trusted

• Permissions: Can emergency-stop minting operations for specific addresses or globally

• Risk: Can halt the fast bridge service but cannot steal funds directly

End Users

• Trust Level: Untrusted

• Permissions: Can initiate bridge transactions, or mint their bridged token through the vault

• Risk: Limited to their own funds; protected by daily limits and minimum amounts

2.3.3 External Dependencies
LayerZero Protocol

LayerZero is out of scope for this review and is trusted to behave correctly and deliver messages to the
correct destination.

The owner of the OApps can set arbitrary peers or update the delegate registered in the Endpoint.
This could lead to draining or losing all funds, and hence, both the owner and the delegate are fully
trusted.

The LayerZero executor is trusted to always deliver messages with the correct provided message value
and gas limit. In the worst case, they could never deliver a message and keep what was paid to them for
the gas limit and message value to forward on the receiving chain. The system would still be functional,
but someone would have to pay for the message delivery costs by calling EndpointV2.lzReceive()
on the receiving chain.

The configuration required for managing the LayerZero applications on multiple chains is considered out
of scope for this review and should be performed by the delegate and owner of the OApps, this
includes:

• Correctly setting peers to whitelist on each chain.

• Correctly setting the send and receive libraries to be used. If no send and receive libraries are
explicitly set, the Endpoint will fall back to the default settings set by LayerZero Labs. In case
LayerZero Labs changes the default settings, the oApps will be impacted and use the new default
settings, which implies trust in LayerZero Labs.

• Correctly setting an Executor configuration, including the maximum message size and address of
the executor.

Curve - Fast Bridge - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

• Correctly setting a DVN configuration, including block confirmations, required and optional DVN
count and optional DVN threshold, required DVNs and optional DVNs. If the DVN was compromised,
hypothetically transfers in flight would be censored / blocked, and arbitrary amount of tokens could
be minted on the destination chain. The block confirmation is an important parameter that should
reflect the trust model around the Rollup chain messages are sent from and should be carefully
considered.

The system is not expected to be deployed on non-EVM chains.

Native Bridge and Fast Bridge

The native bridges on Optimism and Arbitrum are trusted to correctly work and ultimately allow releasing
the crvUSD to the FastBridgeVault contract. The informational issue Risk linked to the fast bridge
describes the risk associated with not waiting for finality and pausing of the native bridge. These risks
should be closely monitored and managed through a combination of technical and governance
measures.

Curve - Fast Bridge - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

Curve - Fast Bridge - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

Curve - Fast Bridge - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

5 Open Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Design : Architectural shortcomings and design inefficiencies

• Correctness : Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 0

Curve - Fast Bridge - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Open Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 3

• Code CorrectedAccounting Error When the Receiver Is Also the Fee Receiver

• Code CorrectedMissing or Inconsistent Module Exports

• Code Correctedallowed_to_bridge Returns Incorrect Values

Informational Findings 8

• Code CorrectedDuplicated Event Definition

• Code CorrectedDaily Limit Computation Can Revert Due to Underflow

• Code CorrectedERC20 Tokens Calls

• Specification ChangedEmergency Owner Cannot recover Tokens

• Code CorrectedEvent Not Indexed

• Code CorrectedHard-coded Endpoint ID

• Code CorrectedMissing and Unused Events

• Code CorrectedMissing or Incorrect NatSpec

6.1 Accounting Error When the Receiver Is Also
the Fee Receiver
Correctness Low Version 1 Code Corrected

CS-CURVE-FASTBRIDGE-001

In the FastBridgeVault, if mint() is called by a minter with _receiver == fee_receiver, the
fee will be miscounted and locked in the contract until the default admin calls recover to unlock it.

@external
@nonreentrant
def mint(_receiver: address, _amount: uint256) -> uint256:
 """
 @notice Receive bridged crvUSD
 @param _receiver Receiver of crvUSD
 @param _amount Amount of crvUSD to mint (0 if not minter)
 @return Amount of crvUSD minted to receiver
 """
 assert not (self.is_killed[empty(address)] or self.is_killed[msg.sender])

Curve - Fast Bridge - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

 amount: uint256 = self.balanceOf[_receiver]
 if access_control.hasRole[MINTER_ROLE][msg.sender]:
 fee: uint256 = _amount * self.fee // 10 ** 18
 self.balanceOf[self.fee_receiver] += fee
 amount += _amount - fee

 available: uint256 = min(self._get_balance(), amount)
 if available != 0:
 extcall CRVUSD.transfer(_receiver, available)
 self.balanceOf[_receiver] = amount - available
 return available

This is because in such a case, self.balanceOf[self.fee_receiver] is first updated with the fee,
and then self.balanceOf[_receiver] is overridden with the new amount, effectively losing the fee
that was just added.

Code corrected:

A check was added in mint() to ensure that if _receiver is equal to self.fee_receiver, the fee is
correctly accounted for.

6.2 Missing or Inconsistent Module Exports
Design Low Version 1 Code Corrected

CS-CURVE-FASTBRIDGE-014

The following module exports are missing:

• In FastBridgeVault, access_control.set_role_admin

• In FastBridgeL2, ownable.renounce_ownership

The following module exports are inconsistent:

• In L2MessengerLZ, OApp.setReadChannel is exported, but it is not in VaultMessengerLZ.

Code corrected:

In FastBridgeVault and FastBridgeL2, access_control.set_role_admin and
ownable.renounce_ownership are now exported. In L2MessengerLZ, OApp.setReadChannel is
no longer exported.

6.3 allowed_to_bridge Returns Incorrect
Values
Correctness Low Version 1 Code Corrected

CS-CURVE-FASTBRIDGE-002

In FastBridgeL2, allowed_to_bridge is defined as:

Curve - Fast Bridge - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

@external
@view
def allowed_to_bridge(_ts: uint256=block.timestamp) -> (uint256, uint256):
 """
 @notice Get interval of allowed amounts to bridge
 @param _ts Timestamp at which to check (current by default)
 @return (minimum, maximum) amounts allowed to bridge
 """
 available: uint256 = self.limit - self.bridged[_ts // INTERVAL]

 balance: uint256 = staticcall CRVUSD.balanceOf(self) # Someone threw money by mistake
 min_amount: uint256 = self.min_amount
 min_amount -= min(min_amount, balance)

 if available < min_amount: # Not enough for bridge initiation
 return (0, 0)
 return (min_amount, available)

In general, the function is designed to return the minimum and maximum amounts allowed to bridge at a
given timestamp.

However, the function accounts for the balance of the FastBridgeL2 contract itself in the computation,
assuming that users can use the contract's balance as part of their bridging amounts. This is however not
the case and bridge() does not allow users to bridge the contract's own balance. If the contract's
crvUSD balance is non-zero, the function allowed_to_bridge() will return incorrect values.

For example, assume that:

self.limit = 1000
self.bridged[block.timestamp // INTERVAL] = 800
self.min_amount = 400
CRVUSD.balanceOf(self) = 200

• bridge() would fail given the above values, as the contract will try to call bridger.bridge()
with amount = 1000 - 800 = 200 crvUSD, but with a min_amount = 400.

• As opposed, allowed_to_bridge() would return (200, 200) which is incorrect.

Code corrected:

The function was updated to match with the function bridge, and do not depends on the contract's
balance anymore. Funds directly sent to the contract will be locked in the FastBridgeL2 contract and
will not be considered in the bridging amounts.

6.4 Duplicated Event Definition
Informational Version 2 Code Corrected

CS-CURVE-FASTBRIDGE-015

In FastBridgeL2, the event Bridge is defined, although the contract implements IBridger which
already includes the same event. IBridger.Bridge could hence be used instead of Bridge.

Code corrected:

The duplicated event definition was removed.

Curve - Fast Bridge - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

6.5 Daily Limit Computation Can Revert Due to
Underflow
Informational Version 1 Code Corrected

CS-CURVE-FASTBRIDGE-003

In the FastBridgeL2, if the owner were to update self.limit in such a way that it is lower than the
bridged amount for the current period, both bridge() and allowed_to_bridge() (with
_ts == block.timestamp) will revert given the following computation:

self.limit - self.bridged[block.timestamp // INTERVAL]

Code corrected:

The function _get_available now ensures underflow cannot happen:

@view
def _get_available(ts: uint256=block.timestamp) -> uint256:
 limit: uint256 = self.limit
 bridged: uint256 = self.bridged[ts // INTERVAL]
 return limit - min(bridged, limit)

6.6 ERC20 Tokens Calls
Informational Version 1 Code Corrected

CS-CURVE-FASTBRIDGE-004

Across the codebase, ERC20 token approve(), transfer() and transferFrom() functions are
called:

1. Without checking the return value.

2. Without specifying default_return_value = True

Although in some cases the token is known to be crvUSD, which is assumed to be a compliant ERC20
token on each chain it is deployed on, it is still a best practice to check the return value of these functions
to ensure that the operation was successful, and to handle tokens not returning a value. Moreover, it
makes the code more robust, reusable and easier to maintain.

In all the following cases the return value is not checked and default_return_value is not specified:

• approve(), called in FastBridgeL2.__init__(), FastBridgeL2.set_bridger(),
FastBridgeVault.__init__(), ArbitrumBridger.bridge() and
OptimismBridger.bridge().

• transfer(), called in FastBridgeVault.mint().

• transferFrom(), called in FastBridgeL2.bridge().

Code corrected:

Curve - Fast Bridge - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

All ERC20 calls were made safe.

6.7 Emergency Owner Cannot recover Tokens
Informational Version 1 Specification Changed

CS-CURVE-FASTBRIDGE-005

In FastBridgeVault, the NatSpec of recover mentions:

Callable only by owner and emergency owner

However, the function is restricted to the owner only (DEFAULT_ADMIN_ROLE), and not the emergency
owner.

Specification changed:

The documentation was updated to reflect the actual access control of the recover function.

6.8 Event Not Indexed
Informational Version 1 Code Corrected

CS-CURVE-FASTBRIDGE-006

The following events have no indexed fields, which may lead to difficulties in tracking important actions:

• All events in FastBridgeL2

Code corrected:

Curve added more events and indexed fields for events when found relevant.

6.9 Hard-coded Endpoint ID
Informational Version 1 Code Corrected

CS-CURVE-FASTBRIDGE-008

In L2MessengerLZ, the VAULT_EID is hard-coded as an immutable in the __init__ function,
however, LayerZero officially recommends using for example admin-restricted setters to configure
endpoint IDs instead of hard-coding them.

Code corrected:

An owner-restricted setter function was added to allow the admin to configure the Vault EID instead of
hard-coding it.

6.10 Missing and Unused Events
Informational Version 1 Code Corrected

Curve - Fast Bridge - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

CS-CURVE-FASTBRIDGE-010

The following functions perform important actions but do not emit events:

FastBridgeL2:

• bridge

ArbitrumBridger:

• bridge

OptimismBridger:

• bridge

L2MessengerLZ:

• __init__

• set_fast_bridge_l2

• set_gas_limit

• initiate_fast_bridge

FastBridgeVault:

• __init__

• schedule_rug

• mint

• set_killed (SetKilled is unused)

• set_fee

• set_fee_receiver

• recover

VaultMessengerLZ:

• set_vault

• lzReceive

Code corrected:

All above functions now emit events.

6.11 Missing or Incorrect NatSpec
Informational Version 1 Code Corrected

CS-CURVE-FASTBRIDGE-011

The following NatSpec comments are missing or incorrect:

FastBridgeL2:

• __init__: Missing

• cost: Missing return

ArbitrumBridger:

Curve - Fast Bridge - ChainSecurity - © Decentralized Security AG 19

https://chainsecurity.com

• bridge: NatSpec mentions Optimism and bridging from L1 to L2, where this is an Arbitrum-to-L1
bridge.

OptimismBridger:

• bridge: NatSpec mentions bridging from L1 to L2, where this is an L2-to-L1 bridge.

L2MessengerLZ:

• quote_message_fee: Missing return

• initiate_fast_bridge: Missing _lz_fee_refund param

FastBridgeVault:

• __init__: Missing

Code corrected:

All NatSpec comments have been added or corrected to accurately reflect the function behavior and
parameters.

Curve - Fast Bridge - ChainSecurity - © Decentralized Security AG 20

https://chainsecurity.com

7 Informational
We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1 Gas Savings
Informational Version 1 Code Partially Corrected

CS-CURVE-FASTBRIDGE-007

The following gas optimizations were identified:

1. In FastBridgeL2.__init__, the two emitted events SetMinAmount and SetLimit each read
from storage the value of the corresponding parameter, while they could use a local variable
instead.

2. In FastBridgeL2.bridge, self.bridged[block.timestamp // INTERVAL] is read from
storage twice, while it could be stored in a local variable.

3. In FastBridgeVault.__init__, self.fee is explicitly set to zero, while it is already initialized
to zero by default.

4. In FastBridgeVault.schedule_rug, self.schedule_rug is read from storage after writing
to it, while a local variable could be used.

5. In FastBridgeVault.__init__ the role admin of MINTER_ROLE and KILLER_ROLE is
explicitly set to the DEFAULT_ADMIN_ROLE, but in snekmate.access_control, by default, the
admin role for all roles is already DEFAULT_ADMIN_ROLE.

6. In FastBridgeVault.mint the fee calculation and storage update is done even for zero fee.

Code partially corrected:

All gas optimizations were implemented except for points 1, 2, and 6. Curve acknowledges this and will
not implement these optimizations.

7.2 Missing Sanity Checks
Informational Version 1 Code Partially Corrected

CS-CURVE-FASTBRIDGE-009

The following functions do not perform sanity checks on their parameters:

1. FastBridgeL2.__init__ does not check that the provided addresses are not zero.

2. FastBridgeL2.bridge does not check that the provided _to address is not zero, nor the
address of crvUSD on Ethereum mainnet. In such case, the funds will be locked in the vault on
Ethereum given the implementation of crvUSD:

@internal
def _transfer(_from: address, _to: address, _value: uint256):
 assert _to not in [self, empty(address)]

Curve - Fast Bridge - ChainSecurity - © Decentralized Security AG 21

https://chainsecurity.com

 self.balanceOf[_from] -= _value
 self.balanceOf[_to] += _value

 log Transfer(_from, _to, _value)

3. In FastBridgeL2, set_bridger and set_messenger do not check that the provided
addresses are not zero.

4. In FastBridgeL2, allowed_to_bridge does not ensure the given timestamp is greater than or
equal to the current block timestamp.

5. In OptimismBridger and ArbitrumBridger, the bridge function does not check that the
provided _to address is not zero.

6. In OptimismBridger, the bridge function does not check that the given _token is a
OptimismMintableERC20 using EIP-165.

7. In L2MessengerLZ, set_fast_bridge_l2 does not check that the provided address is not zero.

8. In VaultMessengerLZ, set_vault does not check that the provided address is not zero.

9. In FastBridgeVault, __init__ does not check that the provided addresses are not zero.

Code partially corrected:

All above functions now include sanity checks for their parameters except for the following:

1. FastBridgeL2.bridge now checks that the provided _to address is not zero, but not that it is
not the address of crvUSD on Ethereum mainnet. Curve acknowledges this and answered that it
would be hard to check that an Ethereum mainnet address from an L2 contracts.

2. In OptimismBridger, the bridge function does not check that the given _token is a
OptimismMintableERC20 using EIP-165. Curve acknowledges this and answered that EIP-165
check is skipped since it is assumed to be used with only compatible coins.

7.3 Unnecessary Approvals
Informational Version 1 Acknowledged

CS-CURVE-FASTBRIDGE-012

Both the OptimismBridger and the ArbitrumBridger give approval to the native bridge of each
chain before calling respectively bridgeERC20To and outboundTransfer. However, this approval is
not necessary as in each case, the native bridge does not need an allowance to burn tokens from the
Bridger contract.

Acknowledged:

Curve acknowledges the finding and decided to keep it as the behaviour of the system could be different
with custom gateways/bridges.

7.4 Unused Code
Informational Version 1 Acknowledged

CS-CURVE-FASTBRIDGE-013

Curve - Fast Bridge - ChainSecurity - © Decentralized Security AG 22

https://chainsecurity.com

In OptimismBridger the following code is commented and unused:

OPTIMISM_L2_BRIDGE: constant(address) = 0x4200000000000000000000000000000000000010

Acknowledged:

Curve acknowledges the unused code and keeps it for convenience.

Curve - Fast Bridge - ChainSecurity - © Decentralized Security AG 23

https://chainsecurity.com

8 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

8.1 Limits Not Synced Between L1 and L2
Note Version 1

The current implementation allows to fast bridge at max self.limit per interval. This limit is enforced
on L2. On L1 the maximum that is possible to fast bridge is the amount of crvUSD in the vault.

These are two independent limits with no enforced sync between them.

8.2 Risk Linked to the Fast Bridge
Note Version 1

The fast-bridge mechanism lets users receive crvUSD on Ethereum before the L2 output root passes the
challenge window on L1. To enable that early payout, Curve's ControllerFactory effectively provides
liquidity to the FastBridgeVault (by minting unbacked crvUSD) so the vault can honor fast
withdrawals while the native bridge transfer is still finalizing.

The ControllerFactory covers this interim liquidity (via a debt/debt-ceiling mechanism). If the L2
transaction does NOT produce the intended effect (for example, the transaction is dropped, reverts, or its
effects are invalidated by a fault proof or chain reorganization), the vault can be left short of assets
because the fast-bridged crvUSD have already been paid out.

That shortfall is economic risk borne by the ControllerFactory (and by extension whoever controls
its minting/repayment policy), creating potential protocol-level bad debt.

Clarifying failure modes

• Dropped: the L2 sequencer/batcher never includes the transaction in a published batch (or the batch
is never posted), so the expected state changes never materialize on L1.

• Reverted: the transaction executes but reverts when verifying the rollup state, so the expected state
change does not occur.

• fault proof / dispute / reorganization: a later fault proof or L1 reorg can invalidate a previously
accepted L2 batch or change the canonical state produced by the L2, causing previously assumed
transfers to be undone.

These are distinct failure modes but have the same consequence for the fast-bridge: the native-bridge
transfer that was expected to back the fast payout may not finalize, producing a funding shortfall that the
ControllerFactory must cover.

The following outlines risks that could lead to this situation:

L2 transaction inclusion / finality risk

• When a user fast-bridges from an L2, the vault may immediately supply crvUSD to the recipient
based on a LayerZero message.

• Depending on the confirmation / DVN/ULN settings used by the OApp and endpoint, the message
may be processed:

Curve - Fast Bridge - ChainSecurity - © Decentralized Security AG 24

https://chainsecurity.com

1. While the L2 transaction is still unsafe (e.g., included in a sequencer batch that has not
been posted or sufficiently confirmed).

2. While the transaction appears included on L1 but is still within a reorg/fault-proof window.

3. Only after the transaction is finalized with a high confidence of irreversibility.

• In the first two scenarios, the L2 transaction could ultimately be dropped or invalidated, leaving the
vault having already paid out fast-bridged crvUSD while the native-bridge transfer is invalid.

L2 transaction output mismatch risk

• Even when a transaction is posted, the posted state or outputs might not match the expected output
(e.g., differences between the sequencer's claim and what verifiers gets). In such cases the
transaction can revert while the fast-bridge payout has already been made.

Native bridge pause risk

• Optimism documents a pause mechanism for the Ethereum-side bridge:
https://docs.optimism.io/stack/security/pause

• If the native bridge is paused, native-bridge receipts to the vault may be delayed or blocked while
LayerZero-based fast-bridge messages continue to be processed, creating a liquidity mismatch until
the bridge is resumed.

• Arbitrum does not expose the exact same pause primitive, however, bridge upgrades or operator
actions that delay L1 settlement can produce similar effects.

Potential impacts and scenarios

The primary impact is vault insolvency: a successful fault proof, dropped batch, or prolonged bridge
pause could render the vault illiquid and unable to repay the ControllerFactory.

A prolonged pause or operational delay in the native bridge exacerbates exposure because the vault
cannot receive the underlying funds needed to cover fast withdrawals.

Mitigations and recommendations

This situation should be closely monitored and managed through a combination of technical and
governance measures.

• Conservative confirmation / DVN settings: configure OApp/endpoint (DVN/ULN) confirmations and
thresholds conservatively so messages are processed only after sufficient finality.

• Conservative debt ceilings: set and enforce low vault debt ceilings relative to expected native-bridge
throughput.

• Tight caps and rate limits: enforce sensible per-day, per-chain limits for fast-bridging to limit peak
exposure.

• Emergency controls: ensure fast-bridge minting can be paused quickly and that pause/parameter
changes follow governance rules and timelocks.

• Monitoring and alerting: implement real-time monitoring for fast-bridge volumes, bridge
confirmations, and unusual activity; trigger automated rate-limit reductions or pauses when
thresholds are exceeded.

• As recommended by Optimism, monitor the native-bridge pause contract and take defensive actions
when it is paused:

If you operate a centralized exchange or third party bridge, you should monitor this contract and
pause withdrawals from the Superchain if you see that it has been paused.

Curve - Fast Bridge - ChainSecurity - © Decentralized Security AG 25

https://docs.optimism.io/stack/security/pause
https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 FastBridgeL2 Contract
	2.2.2 The Bridger contracts
	2.2.3 The L2MessengerLZ
	2.2.4 The FastBridgeVault
	2.2.5 The VaultMessengerLZ
	2.2.6 Receiving crvUSD on Ethereum
	2.2.7 Changelog

	2.3 Trust Model
	2.3.1 General Architecture
	2.3.2 Roles and Trust Levels
	2.3.3 External Dependencies

	3 Limitations and use of report
	4 Terminology
	5 Open Findings
	6 Resolved Findings
	6.1 Accounting Error When the Receiver Is Also the Fee Receiver
	6.2 Missing or Inconsistent Module Exports
	6.3 allowed_to_bridge Returns Incorrect Values
	6.4 Duplicated Event Definition
	6.5 Daily Limit Computation Can Revert Due to Underflow
	6.6 ERC20 Tokens Calls
	6.7 Emergency Owner Cannot recover Tokens
	6.8 Event Not Indexed
	6.9 Hard-coded Endpoint ID
	6.10 Missing and Unused Events
	6.11 Missing or Incorrect NatSpec

	7 Informational
	7.1 Gas Savings
	7.2 Missing Sanity Checks
	7.3 Unnecessary Approvals
	7.4 Unused Code

	8 Notes
	8.1 Limits Not Synced Between L1 and L2
	8.2 Risk Linked to the Fast Bridge

