

PUBLIC

Code Assessment

of the Curve Stablecoin

Smart Contracts

February 21, 2025

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 14

4 Terminology 15

5 Open Findings 16

6 Resolved Findings 27

7 Informational 49

8 Notes 55

Curve - Curve Stablecoin - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear Curve team,

Thank you for trusting us to help you with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of Curve Stablecoin according
to Scope to support you in forming an opinion on their security risks.

Curve implements a stablecoin that is based on different mechanics to keep it stable and manage the
loans. The stablecoin's logic is additionally re-used to implement a lending platform where markets can
have the stablecoin either has the collateral or the borrowable token.

The most critical subjects covered in our audit are the solvency of the protocol, rounding and numerical
precision, and oracles. Security regarding is good, although solvency issues remain because Bad debt is
not socialized in the lending vaults. Security regarding rounding and numerical precisions is good. Some
issues were uncovered, see Low Decimals Tokens May Accumulate No Interest and Liquidation rounds
debt toward 0 Few protocols implement fully on-chain oracles. This subject is therefore especially critical.
Security of oracles is improvable, see Oracle Manipulation on L2, Intermediate currency value leakage,
and Vault pricePerShare can be manipulated downward

There are still many low severity issues not fixed, and given a stable codebase and more time, likely
many more could be found, due to the complexity of the codebase. However, assuming the more severe
issues are addressed, they should be mostly benign.

In general, the unpermissioned nature of factory contracts allows anybody to create lending markets with
arbitrary parameters, which could reveal dangers for lenders and borrowers. Curve should communicate
this risk clearly to users.

In summary, we find that the codebase provides a good level of security.

The contracts are complex and have even more complex dependencies. We did not review the economic
soundness of the contracts nor is it possible to find all the edge cases in this system. It is important to
note that security audits are time-boxed and cannot uncover all vulnerabilities. They complement but
don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

Curve - Curve Stablecoin - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 1

• Code Corrected 1

High -Severity Findings 3

• Code Corrected 3

Medium -Severity Findings 19

• Code Corrected 14

• Code Partially Corrected 1

• Risk Accepted 4

Low -Severity Findings 42

• Code Corrected 25

• Specification Changed 2

• Risk Accepted 15

Curve - Curve Stablecoin - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the Curve Stablecoin repository based on
the documentation files. The table below indicates the code versions relevant to this report and when
they were received.

V Date Commit Hash Note

1 04 October 2022 32f85fe9b06b538cce8fb3a952af4523fc9f93b1 Initial Version

2 31 October 2022 59171820b0b41510157778d49335dd3bbf06fcdf Version 2

3 17 February 2023 475ccb7572b93a2b826f10edc2678b4aff0bfc48 Version 3

4 19 April 2023 f7a514ae24f86fc4856401826f8bc6cc207451d1 Version 4

5 7 May 2023 7b1e773877c9e9055b41db320b131626fd98faf2 Version 5

6 1 July 2023 64dc13db563ec6067c75c662ee71a285442ef638 Version 6

7 12 August 2023 5c61cdf2cb2098595ad25cb5f6cc479b3201f4bd Version 7

8 28 August 2023 b048fc782bd80a868d4ed882b3e6b371b40c1c03 Version 8

9 11 Dec 2023 5a46bb9c1f43b7d4062127b9919e3c2ed366ad34* PegKeeperV2

10 23 February 2024 528c8d1987170baaa5f8fb51269cf99e6b226db5 Lending Version 1

11 13 March 2024 9e20913fb46db6d3774c56b13ba17d6911cb2caa Lending Version 2

12 27 August 2024 7f192edba62856d48171991eadcc73a0bce52183 Integrability upgrade

13 27 November 2024 db6fcac9a341b3a612704ae0018a6593bbac04d5 Various fixes

14 22 January 2025 e742e1adfba22f837bf80dfa0fd5a4426f9d484c Various fixes

15 15 February 2025 16b29c2dfcf725e27808bb0907bfba7c30568628 Various fixes

* This commit is no longer visible in the Curve repository as the branch it was on was force pushed to.

For the vyper smart contracts, depending on the commit reviewed, the compiler version 0.3.7, 0.3.9
and 0.3.10 were chosen.

The following files were in scope:

Version 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Controller.vy X X X X X X X X X X X X X X

ControllerFactory.vy X X X X X X X X X X X X

AMM.vy X X X X X X X X X X X X X X

Stablecoin.vy X X X X X X X X X X X X

mpolicies/AggMonetaryPolicy.vy X X X X X X X X X X X X

mpolicies/AggMonetaryPolicy2.vy X X X X X X X

mpolicies/SemilogMonetaryPolicy.vy X X X X X X

price_oracles/AggregateStablePrice.vy X X X X X X X X X X X X

price_oracles/AggregateStablePrice2.vy X X X X X X X

price_oracles/CryptoWithStablePriceAndChainlinkFrxeth.vy X X X X X X X X X X X X

price_oracles/CryptoFromPool.vy X X X X X X

price_oracles/CryptoFromPoolVault.vy X X X X X X

price_oracles/CryptoFromPoolVault_noncurve.vy X X X X X X

price_oracles/OracleVaultWrapper.vy X X X X X X

stabilizer/PegKeeper.vy X X X X X X X X

stabilizer/PegKeeperV2.vy X

stabilizer/PegKeeperRegulator.vy X

lending/OneWayLendingFactory.vy X X X X X X

lending/OneWayLendingFactoryL2.vy X X X X

Curve - Curve Stablecoin - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

lending/TwoWayLendingFactory.vy X X X X X X

lending/Vault.vy X X X X X X

BoostedLMCallback.vy X X X X

flashloan/FlashLender.vy X X X X

2.1.1 Excluded from scope
Third-party dependencies, testing files, and any other files not listed above are outside the scope of this
review.

2.2 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

At the end of this report section we have added subsections for each of the changes accordingly to the
versions.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Curve offers a new stablecoin backed by three core concepts:

• An AMM handling (partial) liquidations in most cases

• A peg keeper in combination with a stable swap exchange

• A Monetary policy

The system is also adapted to offer lending markets where users can borrow and lend assets, as long as
one of the asset is the stablecoin.

2.2.1 Common Components

2.2.1.1 Controller
The controller is the entry point for users to get a loan and manage their debt positions. Additionally, the
contract also allows users to liquidate either themselves or other users with bad debt. The controller
contract is the admin of the corresponding LLAMMA contract.

Borrowers interact with the Controller to borrow through functions create_loan(),
create_loan_extended(), borrow_more(), and borrow_more_extended(). Borrowers can
modify their collateralization ratio through functions add_collateral() and remove_collateral().
They also can repay their outstanding debt and recover their collateral through functions repay() and
repay_extended(). Finally, arbitrageurs can liquidate positions whose collateral value minus
liquidation_discount is less than the debt through the functions liquidate() and
liquidate_extended(). The _extended version of each method implements a callback which is
executed after the funds have been transferred to the caller, but before the caller has transferred funds to
the controller.

The Controller has a set of privileged methods that can only be called by its admin. The admin of the
Controller is queried from the admin() method of its deployer, in the case of the lending, the Vault. The
privileged methods that the admin can use are:

• set_amm_fee(): sets the minimum fee applied to exchanges in the AMM

• set_amm_admin_fee(): sets the share of AMM fee that gets to the fee_receiver. Which
should not be used in the case of the lending as the vault has no fee_receiver.

Curve - Curve Stablecoin - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

• set_monetary_policy(): sets the monetary policy used in the rate calculation

• set_borrowing_discounts(): sets the loan and liquidation discounts. Existing positions are not
affected by changes in liquidation discounts.

• set_callback(): sets the liquidity mining callback that gets called by the AMM every time a
borrower's collateral changes

The Controller keeps track of all individual loans, by saving the initial loan amount and the rate_mul,
the value of an index at the time of loan creation. This index is global and compounds with the interest
rate computed by the monetary policy. Given an initial loan amount and the rate_mul index at the time
of loan creation, the current debt of a loan is computed as
initial_loan * current_rate_mul / initial_rate_mul. The controller also keeps track of
the total amount of debt of the system, which is accessible through the view method total_debt().
The total debt is used in the case of the lending by the Vault to estimate its total assets, and in general by
the monetary policy to compute the utilization of the market.

2.2.1.2 AMM (LLAMMA)
The AMM is where the collateral of each position is deposited. As the price of the collateral decreases, it
gradually becomes profitable for arbitrageurs to exchange the borrowable token for the collateral, which
is sold at a discount w.r.t. to market price, as queried from the price oracle. The AMM internally
represents the tokens in 18 decimals precision. Token amounts for tokens with fewer decimals are scaled
to 18 decimals precision.

To prevent bad debt (the collateral being worth less in stable coin than the debt in stable coin), a
special-purpose AMM sells the collateral step-by-step if it falls in price against the stablecoin. The AMM
differs from Uniswap in that, when the price of the collateral drops, the AMM accumulates stablecoins
and vice versa. Such an AMM is able to perform liquidations automatically. Therefore, this is referred to
as lending-liquidating AMM algorithm (LLAMMA). Like any AMM, the LLAMMA allows depositing liquidity,
withdrawing and exchanging. But only exchanging is non-restricted. Deposits and withdrawals must to be
done via the controller contract. Liquidity deposits are initially always in collateral and, when prices fall to
a certain level, the collateral is exchanged for borrowable. This kind of soft liquidation ensures that, in the
end, the collateral is fully liquidated before the debt gets underwater.

2.2.2 Stablecoin Specific

2.2.2.1 Stablecoin
The stablecoin contract itself is an ERC20-compliant, mintable, and burnable token. The contract has one
admin, which should be the controller factory contract.

2.2.2.2 Collateral Token
To borrow stable coins, collateral needs to be deposited. Collateral contracts are assumed to be
ERC20-compliant tokens with no uncommon behavior like deflation, inflation or callbacks.

2.2.2.3 Oracle contracts
Multiple price oracle contracts are implemented such as AggregateStablePrice,
CryptoWithStablePrice and EmaPriceOracle. All contracts aggregate prices in different ways and
return the collateral price.

Curve - Curve Stablecoin - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

2.2.2.4 Monetary Policy
The monetary policy contracts include two implementations. AggMonetaryPolicy and
ConstantMonetaryPolicy. Both contracts return a rate. This rate is used to discount the base price of
the LLAMMA contract. This mechanism is implicitly acting like a loan interest rate by discounting the base
price of the LAMMA. ConstantMonetaryPolicy will always return the rate that is currently set by the
admin contract. AggMonetaryPolicy dynamically calculates a rate by weighting the oracle price with
the aggregated debt of the peg keeper contracts in relation to the debt of the controller and a target debt
ratio.

2.2.2.5 Peg Keeper
The Peg Keepers can add and withdraw one-sided liquidity to stable swap exchanges to push or pull the
price up or down. The peg keeper assumes that prices should always be 1:1 to the pegged asset. Hence,
they act when the balances in the pool are not equally distributed. The peg keeper checks ex-post that
the action's impact did not change the price in an unfavorable direction (pushed the price over the 1:1
ratio in the wrong direction).

2.2.2.6 Stable Swap
The stable swap contract is the latest version of the common stable swap pool. It allows the trading of
two assets that should stay in a very small price range.

2.2.2.7 Controller Factory
The Controller Factory manages the deployment of new markets (consisting of a controller and a
LLAMMA), the monetary policy and the peg keepers. It oversees and manages the stablecoin minting
and, hence, the limits of each debt controller. The factory has the admin role in the stablecoin. The
factory's admin is also the admin of the controllers.

2.2.3 Lending Specific
The logic of the Curve Stablecoin smart contract suite to implement lending markets. Stablecoin minting
is indeed similar to borrowing an asset. In the case of Stablecoin minting, some collateral is given by
minters in exchange for stablecoin, in the case of a lending platform, collateral is supplied in exchange for
the borrowable asset. Extra logic is required by stablecoin minting to maintain the price peg with the
reference asset, so interest rate policies and peg-keeping mechanisms are required. In particular, the
following differences exist between the Curve Stablecoin system and Curve Lending: In the stablecoin
system, the borrowable asset is fixed to crvUSD, which has 18 decimals. In Curve Lending the
borrowable asset is an arbitrary ERC20 token, and the number of decimals is anything between 0 and
18. A further difference is that the price oracle for the stablecoin system prices the collateral in USD (the
reference asset for the peg), while in lending, the collateral is priced in terms of the borrowable token.
The supply of the Stablecoin is minted, while in Lending the supply comes from users who provide
liquidity. The interest rate policy in the Stablecoin system aims to maintain the peg with the reference
asset, while in lending the interest rate policy is designed to return market interest rates. Finally, the
insolvency risk in the Stablecoin system is carried by the protocol, with the stablecoin potentially
depegging in case of bad debt. With Lending, the insolvency risk is carried by lenders, who supply the
liquidity of the borrowable tokens.

Curve - Curve Stablecoin - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

2.2.3.1 System Architecture
A Curve lending market allows lenders to deposit liquidity in the market (in the form of the borrowable
asset). Other users (borrowers) can then receive the borrowable token, after depositing an amount of
collateral token of value greater than the loan. The value of the borrowed amount has to be smaller than
the value of the collateral, minus a loan discount. When the value of the borrowed amount becomes
bigger than the value of the collateral amount minus the "liquidation discount", the loan can be liquidated,
which means that it can be repaid by a third party, and the loan collateral (of higher value than the loan)
is awarded to the liquidator. Liquidations, however, are a last resort in the system (hard liquidations). In
normal operation, the solvency of positions is ensured by "soft liquidations": The collateral is deposited in
an Automatic Market Maker (AMM), that gradually exchanges the collateral for the borrowed asset, as
the price of the collateral decreases, by selling it at a discount over market price. This prevents the whole
position from being liquidated entirely during short-lived price fluctuations.

2.2.3.2 Lending Markets
A lending market consists of a liquidity pool of a borrowable asset, of which amounts can be borrowed by
depositing a collateral amount of higher value, that can be recovered after repaying the loan amount
consisting of the initial amount borrowed plus the interest generated. Typically, a lending market is
created by the OneWayLendingFactory, which is a singleton contract that acts as an unpermissioned
deployer and a registry for lending markets. Every market is characterized by a single borrowable token
and a single collateral token. A market is composed of a Vault, that enables users to deposit the
borrowable token and become lenders, a Controller where borrowers can create, repay, and modify
loans, and arbitrageurs can liquidate underwater positions, an AMM, where the collateral is deposited,
and which gradually sells it at a discount as its price decreases. The price of the collateral, quoted in the
borrowable asset, is provided by a Price Oracle contract. Finally, the interest rate paid by borrowers is
calculated in a monetary policy contract.

A slightly more complex type of lending market is created through the TwoWayLendingFactory, which
creates for tokens A and B a rehypothecating lending market, that is a lending market where the
collateral is made available for borrowing and therefore earns interest for the borrower that owns it.
Rehypothecating lending markets for tokens A and B are implemented as a pair of lending markets, one
where the borrowable is A, and the other where the borrowable is B. The collaterals are respectively the
shares of the other market's vault. So the collateral to borrow A is cvB (shares of the B vault), and the
collateral to borrow B is cvA.

2.2.3.3 Vault
Vault is a new component of the system designed for the lending part, it implements the ERC-4626
tokenized vault standard for liquidity provision to a lending market. Lenders can deposit the borrowable
asset through functions deposit() and mint(), and receive shares of the vault in exchange. The Vault
in turn deposits the borrowable asset to the Controller, where it can be borrowed. Shareholders of the
vault can redeem() or withdraw(), to exchange shares for the borrowable asset. The value of a share
is computed as the balance in borrowable token of the controller, plus the amount of debt issued by the
controller. This latter amount includes interest accumulated by outstanding loans. As the Vault only has
access to the amount of borrowable tokens currently in the Controller, the shareholders (lenders) are not
guaranteed to be able to withdraw their funds. However, in case of low liquidity, the interest rate will rise
to encourage loan repayment (low borrowable balance on Controller, and therefore low withdrawable
amount for shareholders). After every change of borrowable asset balance in the vault, the interest rate is
for this reason updated in the Controller. The Vault implements the ERC20 standard for its own shares.
To mitigate share price inflation attacks, the vault performs calculations by adding 1000 "virtual dead
shares" to its total supply of shares. Shares have 18 decimals precision, while the underlying asset
(borrowable token) has possibly less precision. The price per share is initialized as 1000 shares per 1
unit of underlying. Vaults have an admin() view method, however, they do not have privileged methods
accessible by the admin. Their admin() method is queried by the Controller to perform access control
on its own setters. The admin() method returns the admin of the Vault's factory, which is expected to be
the DAO.

Curve - Curve Stablecoin - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

The Vault acts as the deployer for the Controller and the AMM. After it deploys the AMM, it sets its admin
as the Controller.

2.2.3.4 Price Oracle
The price oracle is used by the AMM for price calculation, and by the Controller for loan creation and
liquidation. As opposed to the Curve Stablecoin, it returns the price of the collateral in terms of the
borrowable token. In the Stablecoin system, it returns the price of the collateral in terms of the peg
reference asset (USD). Three implementations of the price oracle use Curve pools price_oracle()
function as a source of information:

• CryptoFromPool

• CryptoFromPoolVault

• CryptoFromPoolVault_noncurve

For security reasons, only pools of type TwoCrypto-ng, tricrypto-ng, and stableswap-ng are expected to
be used for their price_oracle().

2.2.3.5 CryptoFromPool
The contract is an oracle to be used for the AMM of a Vault created by a OneWayLendingFactory. It is
initialized with a Curve pool which should contain both the borrowable and the collateral token of the
vault. Both price() and price_w() do not perform state changes and return the price of the collateral
token in terms of the borrowed token. The price returned is subject to the time-weighted exponential
average performed in the Curve pool as the price_oracle function is used.

2.2.3.6 CryptoFromPoolVault
CryptoFromPoolVault is very similar to CryptoFromPool except that it is supposed to be used for
Vaults created by the TwoWayLendingFactory. The factory creates two vaults respectively for tokens
A and B, emitting cvA and cvB. Given that the respective AMM of each vault contains A/cvB and B/cvA,
instead of using a curve pool containing either cvA or cvB, CryptoFromPoolVault is designed such
that a pool containing the two tokens A and B can be used for both AMMs.

This is done by multiplying the result of the price of one underlying token in terms of the other by the
pricePerShare() of the vault containing the first token. For example, given that we want the price of
cvB in A, we first get the price of B in terms of A from the pool, and then multiply it by
VaultB.pricePerShare().

2.2.3.7 CryptoFromPoolVault_noncurve
CryptoFromPoolVault_noncurve can be used to create a Vault where the collateral token is any
ERC-4626 vault given that there exists a Curve pool containing both crvUSD (the to-be-created vault's
borrowable token), and the underlying token of the third-party vault. The price of the third-party shares in
terms of crvUSD is computed similarly to CryptoFromPoolVault by multiplying the price of the
third-party vault's underlying token in terms of crvUSD by the result of the Vault's
convertToAsset(10**18).

2.2.3.8 Monetary Policy
The monetary policy defines the interest rate applied to loans. The interest rates are variable and change
at every change of utilization. Utilization is defined as the ratio between the outstanding debt and the
liquidity plus debt. The rate in the monetary policy implementation SemilogMonetaryPolicy depends
on two parameters that can be set by the DAO which are min_rate and max_rate. A value between
min_rate and max_rate is returned as the current rate, according to the following exponential curve:

r = exp(log(rm) + U(log(rM) − log(rm))) = rm(rM
rm

)U

Curve - Curve Stablecoin - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

2.2.3.9 Factories
For Lending Market creation, two types of singleton factory contracts are present in the system:
OneWayLendingFactory and TwoWayLendingFactory. Both are unpermissioned deployers for
lending markets and also act as a registry for existing lending markets. Lending Markets created by the
factories require that either the collateral or borrowed token is crvUSD.

They expose the create() and create_from_pool() methods. create_from_pool()
automatically deploys a price oracle based on the Curve pool supplied. Callers of create() and
create_from_pool() have the freedom to choose a wide choice of parameters for newly created
lending markets: The A parameter of the AMM, the AMM fee, loan and liquidation discounts, interest
rates range. For the create() method, an arbitrary price oracle address is also supplied. For this
reason, deployed lending markets are to be considered untrusted until their deployment parameters have
been validated.

The factories have privileged methods that can be called by the admin:

• set_implementations(): sets the contract implementations used in newly deployed lending
markets.

• set_default_rates(): sets the default interest rate parameters when none are specified during
lending market deployment.

• set_admin(): sets the new admin of the factory.

The factories have exchange methods that facilitate interacting with the AMM of the deployed lending
markets.

2.2.3.10 TwoWayLendingFactory
TwoWayLendingFactory deploys two-way lending markets. These consist of a pair of lending markets,
where the borrowable of one is the collateral of the other, and the collaterals are rehypothecating, that is
they are borrowable and earn interest. This is achieved by deploying a pair of vaults where the collateral
of one vault is the share of the other vault.

Version 112.2.4 Changes in
Version 11Notable changes in are:

• Vault.redeem() gives the user the total asset of the vault if the shares to redeem are equal to the
total supply of shares (excluding the dead shares) and total_assets - self.convert_to_as
sets(shares, True, total_assets) < MIN_ASSETS.

• All helper functions of the OneWayLendingFactory used to exchange tokens in one of the Vault's
AMM have been removed.

• CryptoPoolFromVault and OracleVaultWrapper are no longer stateless, instead of calling
some Vault's pricePerShare() method directly, they now cache it locally to be able to limit its
growth.

• A new dynamic fee was introduced in the AMM.

Version 122.2.5 Changes in
Version 12The merges both the stablecoin and lending systems and provide minor changes for better

integrability.

Version 12In the the following two contracts were added and included to the scope:

• FlashLoanLender: The contract allows crvUSD flash loans. The flash loan amount is capped
to the crvUSD balance in the contract. The contract is used like a controller with a debt ceiling to
limit the amount available to flash loan. Hence, the associated factory has the

Curve - Curve Stablecoin - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

approval to mint/burn funds from the FlashLoanLender contract. Users can take a flash loan
by calling flashLoan().

• BoostedLMCallback: This contracts integrates in Curve's reward system. It acts as a liquidity
gauge to calculate the rewards to send to users who are liquidity provided to the associated
AMMs (The stablecoin borrowers). The collateral a user has in an AMM and the locked voting
escrow Curve tokens determine the users' reward share. If users are in a soft-liquidation (current
trading band in a band a user deposited in), the gauge calculates rewards based on the
remaining fractional collateral for the users.

• OneWayLendingFactoryL2: A layer 2 OneWayLendingFactory implementation with minor
adaptions consisting in using existing gauge assumed to be already deployed by the
GaugeFactory for the given vault, instead of deploying it for each vault.

The following notable changes were made to the one-way and two-way lending protocol:

• Minor changes to the OneWayLendingFactory and the Vault. A maximum supply cap was
implemented for both contracts.

• Minor changes in the TwoWayLendingFactory to account for donated funds.

The remaining notable changes affected the AMM and Controller contracts:

• The AMM contract was adapted to work with the new BoostedLMCallback contract and a
dynamic fee was introduced.

• Most changes were done in the Controller contract. Remainders of the ETH compatibility are
removed. Callback bytes for the extended lending operations were introduced. An approval
functionality that allows to perform operations on behalf of another account (if approved) were
added and the AMM's admin fee related functionality removed.

Version 13 Version 142.2.6 Changes in and
Version 13

Version 14

Except for fixes for issues found in the previous versions, no notable changes were made in
and .

Version 152.2.7 Changes in
Version 15In , several fixes were implemented, and the following notable changes was made:

• Using the approval functionality, it is now possible for an approved account to perform self
liquidations using liquidate() or liquidate_extended(), in such case, the liquidation is not
subject to the liquidation discount.

2.3 Trust Model
• Tokens used as lending and borrowing tokens are expected to be ERC20-complient tokens with no

uncommon behavior like deflation, inflation, callbacks, fee-on-transfer or rebasing.

• All permissioned roles are trusted, in the worst case, the admin of the controller factory could mint an
arbitrary amount of stablecoins to an any address using set_debt_ceiling().

• All token balances are smaller than 2**127.

• We assume that the LLAMMA contract's admin functions are only accessed via the controller.

• All stablecoins in the pools upon which the Peg Keeper is acting are 1:1 and do not lose their peg.

• It won't be necessary to loop over more than MAX_SKIP_TICKS.

• For the lending, the deployment of Vault is unpermissioned, anyone could deploy a Vault with
malicious parameters (for example a price oracle that can be manipulated by the deployer). We

Curve - Curve Stablecoin - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

assume in this review that users ensure the Vaults they are interacting with were created with
sensible parameters by honest actors.

Curve - Curve Stablecoin - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

Curve - Curve Stablecoin - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

Curve - Curve Stablecoin - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

5 Open Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Security : Related to vulnerabilities that could be exploited by malicious actors

• Design : Architectural shortcomings and design inefficiencies

• Correctness : Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 5

• Risk AcceptedBad Debt Is Not Socialized

• Risk AcceptedLow Decimals Tokens May Accumulate No Interest

• Risk AcceptedOracle Manipulation on L2

• Risk AcceptedVault pricePerShare Can Be Manipulated Downward

• Code Partially CorrectedManipulable Price Calculation in AggregateStablePrice Method

Low -Severity Findings 15

• Risk AcceptedInconsistent max_p_base Implementations

• Risk AcceptedPure Functions Read Immutables

• Risk AcceptedFlashLender Does Not Check the Return Value of onFlashLoan()

• Risk AcceptedFlashLender Does Not Pull From the Lender

• Risk AcceptedInflation of Vault Share Price Can Result in Unusable Price Oracle

• Risk AcceptedUnderestimated Fee in get_amount_for_price

• Risk AcceptedpreviewRedeem() Does Not Always Behave the Same as redeem()

• Risk AcceptedCalling previewRedeem() Succeed When redeem() Would Revert

• Risk AcceptedIntermediate Currency Value Leakage

• Risk AcceptedLending Market Could Reduce Oracle's Pool Liquidity

• Risk AcceptedLiquidation Feedback Loop for Illiquid Markets

• Risk AcceptedMAX_RATE Constant Too High in SemilogMonetaryPolicy

• Risk AcceptedNon-curve Vault Must Always Be the Collateral Token

• Risk AcceptedVault Creation Lacks Sanity Checks

• Risk AcceptedCryptoFromPoolVault-noncurve Can Return Incorrect Price

5.1 Bad Debt Is Not Socialized
Design Medium Version 10 Risk Accepted

Curve - Curve Stablecoin - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

CS-CRVUSD-035

In case a lending market incurs bad debt, that is a loan is worth less than its collateral, there is no way to
incorporate the bad debt in the price of vault shares. The Vault share price will ignore the bad debt, so
shares can still be redeemed at full value. However, the lending market will be insolvent toward the
holders of the last shares that get redeemed.

Risk accepted:

Client acknowledged the issue and emitted the idea of diverting some protocol fees to serve as POL and
as an insurance to liquidate any existing bad debts.

5.2 Low Decimals Tokens May Accumulate No
Interest
Design Medium Version 10 Risk Accepted

CS-CRVUSD-038

Tokens with high value per wei (in general tokens with few decimals) might significantly underestimate
the amount of interest earned. Controller accounts for the total debt in the borrowed token native
precision, which might not be sufficient to account for the interest accumulated per block.

The total debt interest accrual is performed as:

loan.initial_debt * rate_mul / loan.rate_mul

In particular, the interest during one block is:

loan.initial_debt * (rate_mul - 10**18) / loan.rate_mul

If loan.initial_debt has low precision, the previous calculation will realistically round to zero.

Approximately, this happens when the total debt (in wei) is less than 10**18/(rate*B), where rate is
the rate per second, and B is the rate update interval (at worst one block). For example, for values of 5%
apr, and 1 rate update per block (so every 12 seconds), the maximum amount of debt for which the
interest rounds to 0 is 52560000 wei. For high value-per-wei tokens such as WBTC this corresponds to a
dollar amount of ~$36k (for BTC at $70k), or an unaccounted interest of $1840 per year. For a token
such as Gemini USD, which has 2 decimals, this corresponds to a debt amount of $525k for which the
interest is not accounted, which is $26k per year.

When loans are repaid, the interest on the individual loans is subject to less precision loss, the
unaccounted interest will suddenly appear in the Controller balance, this can cause jumps in price per
share of the vault, which allows extraction of the profit from the vault by sandwiching the loan repayment.

5.3 Oracle Manipulation on L2
Security Medium Version 10 Risk Accepted

CS-CRVUSD-040

The latest price of Curve Stableswap and CryptoSwap pools has to persist over block boundaries to be
incorporated in the EMA price (price_oracle()). The only safe way for an attacker to manipulate the
price oracle on Ethereum without losing a big share of the manipulation capital to arbitrageurs is to
control the blocks after the manipulating trade so that the attacker is guaranteed to be able to do the
arbitrage themselves.

Curve - Curve Stablecoin - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

However, some L2 blockchains such as Arbitrum rely on a centralized sequencer which publishes
transactions on a First-in First-out way. The centralized sequencer will publish transactions on a chain in
the same order as they were received, possibly splitting them across block boundaries. Transactions do
not enter a public mempool, so an attacker can publish consecutive transactions, doing and undoing a
price manipulation, without the risk of losing to arbitrageurs. Since these transactions will sometimes split
across block boundaries, and have different timestamps, this gives attackers a low-risk way to
manipulate the Curve Pool price oracle.

Risk accepted:

Curve answered:

In principle, this precludes ANY way of creating a decentralized non-manipulatable oracle on L2. But
in reality, no one stops a "blind counter-attack" - someone else spamming the network with a
"counter-trade" to unwind one side of the sandwich and make a profit (but tx reverting if the pool was
not manipulated). These blind attempts are cheap to do (L2s!) but can mean a huge loss for an
attacker. So this "blind arbitrage" makes the strategy too risky for attackers if that vector ever
becomes the thing.

5.4 Vault pricePerShare Can Be Manipulated
Downward
Security Medium Version 10 Risk Accepted

CS-CRVUSD-041

Vault implements the following logic in pricePerShare(), to return the initial value when a Vault is not
initialized:

supply: uint256 = self.totalSupply
if supply == 0:
 return 10**18 / DEAD_SHARES

The code above however can also be triggered after some shares were minted, and then burned, turning
the total supply back to zero. In that case, the value returned by pricePerShare() could be changing
from a higher value to 10**18/DEAD_SHARES, the initial value.

In case the price per share was manipulated upward previously, the new price per share after the Vault
has been emptied could be considerably lower. This opens up an attack vector against
TwoWayLendingFactory that consists of the following:

1. Mint shares in Vault as the first depositor (the attacker needs to control the whole total supply so
that it can later turn it back to zero)

2. Considerably raise the price per share, by donating to the Controller

3. Wait until the AMM's price_oracle catches up with the inflated price (the price per share used in
collateral pricing is now high, so a share has a high value as collateral)

4. Empty the Vault: the price is reset to 10**18/DEAD_SHARES

5. Mint shares at the low price, use them as collateral for borrowing (the price_oracle is delayed
and will keep valuing them at the high price).

It is possible to mint shares at the reset price, in step 5, because the last withdrawer takes all the assets
(step 4), even those owned by the dead shares:

Curve - Curve Stablecoin - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

if total_assets - assets_to_redeem < MIN_ASSETS:
 if shares == self.totalSupply:
 # This is the last withdrawal, so we can take everything
 assets_to_redeem = total_assets
 else:
 raise "Need more assets"

Performing this attack allows creating undercollateralized loans on freshly deployed two-way lending
markets.

Risk accepted:

Client acknowledges this issue.

5.5 Manipulable Price Calculation in
AggregateStablePrice Method
Security Medium Version 1 Code Partially Corrected

CS-CRVUSD-004

The price() function in the AggregateStablePrice contract calculates the price of the stablecoin
based on the total supply of stableswap pools.

pool_supply: uint256 = price_pair.pool.totalSupply()

It is possible to manipulate this value, as a malicious actor could significantly change the total supply of
pools by using a large amount of capital (obtained for example with a flashloan). This manipulation could
alter the computed stablecoin price between the range of the stableswap pool with the lowest price to the
stableswap pool with the greatest price. Given the function's role in determining the price used by the
main price oracle, the pegkeepers, and the monetary policies, this may represent a risk.

Code partially corrected:

The new AggregateStablePrice2 contract implements an exponential moving average over the total
supplies of the pools. Note that the first time the price is calculated in a block is then valid for the
remainder of that block. This means that the price is still manipulable to some extent (e.g. using a
flashloan), although due to the moving average the effect will be reduced. An solution such as using the
last price from the previous block may be a more suitable alternative, however it would require moving
the totalSupply EMA oracle from an external contract to the StableSwap contract.

Curve added:

Weighting is still manipulable to some extent, however given the frequency of calls it is not practical
to manipulate it.

5.6 Inconsistent max_p_base Implementations
Correctness Low Version 12 Risk Accepted

CS-CRVUSD-070

Curve - Curve Stablecoin - ChainSecurity - © Decentralized Security AG 19

https://chainsecurity.com

Except for LeverageZap1inch, the Zap contracts implement a function to calculate max_p_base as
well as the Controller contract. The Controller has been updated to include additional checks for
n1 as well as switching from log2 to logn. These changes have not been reflected on the zaps.

Risk accepted:

Curve acknowledges this issue.

5.7 Pure Functions Read Immutables
Correctness Low Version 12 Risk Accepted

CS-CRVUSD-072

Vyper pure should not be able to read immutable variables, however, due to a bug in the Vyper compiler
(see issue 3894), this is not enforced. The following functions are marked as pure but read immutables:

• ControllerFactory.stablecoin().

• factory(), amm(), collateral_token(), borrowed_token() and get_y_effective() in
Controller.

• AMM.coins().

• factory(), pegged(), pool() and aggregator() for PegKeeper.

• factory(), pegged() and pool() for PegKeeper2.

• ma_exp_time() and price_oracle_signature() for EmaPriceOracle.

For AggregatedStablePrice, AggregatedStablePrice2 and AggregatedStablePrice3:

• sigma()

• stablecoin()

For CryptoWithStablePrice, CryptoWithStablePrieAndChainlink and
CryptoWithStablePrieAndChainlinkFrxeth:

• tricrypto()

• stableswap_aggregator()

• stableswap()

• stablecoin()

• redeemable()

• ma_exp_time()

Risk accepted:

Curve acknowledged the issue and will update the code when switching to a Vyper version that enforces
this rule.

Curve - Curve Stablecoin - ChainSecurity - © Decentralized Security AG 20

https://github.com/vyperlang/vyper/issues/3894
https://chainsecurity.com

5.8 FlashLender Does Not Check the Return
Value of onFlashLoan()
Correctness Low Version 12 Risk Accepted

CS-CRVUSD-074

In FlashLender, flashLoan() calls receiver.onFlashLoan() without checking that the returned
value is equal to keccak256("ERC3156FlashBorrower.onFlashLoan"). EIP-3156 specifies
however that:

The lender MUST verify that the onFlashLoan callback returns the keccak256 hash of "ERC3156FlashBorrower.onFlashLoan".

Risk accepted:

Curve acknowledged the issue but decided to keep the current implementation as it is since they prefer a
"push" architecture over a "pull" architecture.

5.9 FlashLender Does Not Pull From the Lender
Correctness Low Version 12 Risk Accepted

CS-CRVUSD-075

In FlashLender, flashLoan() assumes that amount has been repayed by the lender during the
callback, however EIP-3156 specifies that:

After the callback, the flashLoan function MUST take the amount + fee token from the receiver, or revert if this is not successful.

[...]

The amount + fee are pulled from the receiver to allow the lender to implement other features that depend on using transferFrom,
without having to lock them for the duration of a flash loan. An alternative implementation where the repayment is transferred
to the lender is also possible, but would need all other features in the lender to be also based in using transfer instead of
transferFrom. Given the lower complexity and prevalence of a "pull" architecture over a "push" architecture, "pull" was chosen.

Risk accepted:

Curve acknowledged the issue but decided to keep the current implementation as it is since they prefer a
"push" architecture over a "pull" architecture.

5.10 Inflation of Vault Share Price Can Result in
Unusable Price Oracle
Security Low Version 11 Risk Accepted

CS-CRVUSD-043

The Vault share price of empty vaults can be inflated by minting shares and then donating to the
Controller. The manipulation can make oracles unusable, such as CryptoFromPoolVault and
OracleVaultWrapper, which rely on Vault.pricePerShare() but delay their update. For example,
depositing crvUSD 10**9 in an empty Vault will mint 1000*10**9 shares to the depositor. Donating
crvUSD 1000*10**18 (one thousand) to the Controller will inflate the pricePerShare() of the Vault
by 10**12 (very slightly less because of 1000 wei of DEAD_SHARES). Oracles CryptoFromPoolVault

Curve - Curve Stablecoin - ChainSecurity - © Decentralized Security AG 21

https://eips.ethereum.org/EIPS/eip-3156
https://eips.ethereum.org/EIPS/eip-3156
https://chainsecurity.com

and OracleVaultWrapper limit the increase of pricePerShare() to 1% per minute. This means that
the oracles will take about 46 hours to catch up, providing a seriously underestimated price until then.

Risk accepted:

Curve acknowledges the behavior and answered that it is by design:

Sudden change in pricePerShare is bad. So this smooth growth is much safer. It is good however
that new markets are seeded because in the worst case market is not usable (as opposed to unsafe)
for a few days after the manipulation.

5.11 Underestimated Fee in
get_amount_for_price
Correctness Low Version 11 Risk Accepted

CS-CRVUSD-044

In the AMM.get_amount_for_price() view function, get_dynamic_fee() is not used, while it is
used in calc_swap_in() and calc_swap_out(). This can result in an underestimated fee amount on
the part of the view function.

Risk accepted:

Curve answered:

That is in principle true, however that function is not expected to be very precise.

5.12 previewRedeem() Does Not Always Behave
the Same as redeem()
Design Low Version 11 Risk Accepted

CS-CRVUSD-045

According to EIP-4626, previewRedeem():

MUST return as close to and no more than the exact amount of assets
that would be withdrawn in a redeem call in the same transaction.

However, In the Vault, when total_asset - assets_to_redeem < MIN_ASSETS and
shares == self.totalSupply, previewRedeem(shares) returns assets_to_redeem when
redeem(shares) returns total_asset.

Risk accepted:

Curve acknowledges the behavior.

Curve - Curve Stablecoin - ChainSecurity - © Decentralized Security AG 22

https://chainsecurity.com

5.13 Calling previewRedeem() Succeed When
redeem() Would Revert
Design Low Version 10 Risk Accepted

CS-CRVUSD-046

According to EIP-4626, the preview[...]() functions allow an on-chain or off-chain user to simulate
the effects of their action at the current block, given current on-chain conditions. However, none of the
preview functions of the Vault take into consideration MIN_ASSETS. For example, given that the vault
_total_assets() is 0, calling previewDeposit(MIN_ASSETS-1) will return some amount of
shares while deposit(MIN_ASSETS-1) will revert.

Risk accepted:

Curve acknowledges the behavior.

5.14 Intermediate Currency Value Leakage
Design Low Version 10 Risk Accepted

CS-CRVUSD-048

In the CryptoFromPool, CryptoFromPoolVault and CryptoFromPoolVault_noncurve price
oracles, to estimate the collateral price in borrowable token, an independent intermediate currency could
enter the calculation: for example if borrowable is coin 1, and collateral is coin 2 of the pool, the
intermediate prices will be quoted in term of coin 0 in the p_collateral * 10**18 / p_borrowed
calculation. The final result should not depend on the market movements of coin 0, however, since we
are dealing with EMA values, which are arithmetic averages, dividing or multiplying doesn't cancel the
intermediate terms, and the value of the intermediate currency can leak in the result.

Risk accepted:

Curve acknowledges the issue.

5.15 Lending Market Could Reduce Oracle's Pool
Liquidity
Design Low Version 10 Risk Accepted

CS-CRVUSD-049

The deployment of a lending market, with attractive interest rates, could cause the yield for lenders of the
Lending Market to be higher than the yield for Liquidity Providers of the Pool which is used as a price
oracle by the lending market. The consequence is that the lending market oracle would gradually become
more volatile and manipulable as the TVL of the lending market increases, as well as liquidations causing
more price impact.

Version 12As of , the vaults have a configurable max_supply that can cap the amount of liquidity that
can be provided. This feature could be used to limit the effects described above.

Risk accepted:

Curve - Curve Stablecoin - ChainSecurity - © Decentralized Security AG 23

https://chainsecurity.com

Curve answered:

This is a correct observation, something to watch in general as crvUSD grows, and not related to
lending markets.

5.16 Liquidation Feedback Loop for Illiquid
Markets
Design Low Version 10 Risk Accepted

CS-CRVUSD-050

Curve Stablecoin allows the creation lending markets based on Curve pools as the price source.
However, some Curve Pools are the only source of liquidity for a given asset. In that case, liquidations
happening in the lending market will push the price of the collateral in the pool down, without external
markets to arbitrage it back up. This can cause a self-reinforcing liquidation spiral.

Risk accepted:

Curve acknowledged the issue and answered:

This already did happen indeed. So if makets on L2s are deployed - it's better to use oracles taking
prices from more liquid places. For assets which are illiquid globally - better to use caps, and this was
one of the main reasons why caps were introduced.

5.17 MAX_RATE Constant Too High in
SemilogMonetaryPolicy
Correctness Low Version 10 Risk Accepted

CS-CRVUSD-052

The MAX_RATE bound of SemilogMonetaryPolicy is set to 10**19 / (365 * 86400), the
comment says that this corresponds to 1000% interest per year. However, taking compounding into
account, this corresponds to 2202643% per year. The same bound in the Controller is set more
appropriately.

Risk accepted:

Curve acknowledges the issue and agrees that the Controller limits guard against this high rate.

5.18 Non-curve Vault Must Always Be the
Collateral Token
Design Low Version 10 Risk Accepted

CS-CRVUSD-053

Given CryptoFromPoolVault_noncurve, _raw_price()'s implementation:

p_collateral * VAULT.convertToAssets(10**18) / p_borrowed

Curve - Curve Stablecoin - ChainSecurity - © Decentralized Security AG 24

https://chainsecurity.com

The collateral of the to-be-created lending market must be the shares of the non-curve vault, if this is not
the case and the shares of non-curve vault are the borrowable token of the lending market, the oracle will
return incorrect prices. CryptoFromPoolVault_noncurve does not enforce this.

Risk accepted:

Curve answered:

The noncurve oracle is a prototype to use as a code example rather than something to directly use in
prod directly.

5.19 Vault Creation Lacks Sanity Checks
Design Low Version 10 Risk Accepted

CS-CRVUSD-054

In both the OneWayLendingFactory and the TwoWayLendingFactory, when creating vault(s) (using
create() and create_from_pool()), the following sanity checks are missing:

• no sanity check is performed on the name.

• The price oracle given when using create() is not checked to be a valid price oracle for the given
tokens.

• create_from_pool() requires that the pool used is tricrypto-ng, twocrypto-ng, or stableswap-ng
but no validation is performed.

Version 11Since , when creating vault(s) using an existing Curve pool as a price oracle, the existence of a
price oracle in the Curve pool is not enforced. It will simply be assumed that the pool price_oracle()
function does not take any argument:

no_argument: bool = False
if N == 2:
 success: bool = False
 res: Bytes[32] = empty(Bytes[32])
 success, res = raw_call(
 pool.address,
 _abi_encode(empty(uint256), method_id=method_id("price_oracle(uint256)")),
 max_outsize=32, is_static_call=True, revert_on_failure=False)
 if not success:
 no_argument = True
NO_ARGUMENT = no_argument

Risk accepted:

Curve answered:

It is possible to do very shallow validation, but not extremely deep one. So it is anyway needed to
check the markets before voting for them.

Curve - Curve Stablecoin - ChainSecurity - © Decentralized Security AG 25

https://chainsecurity.com

5.20 CryptoFromPoolVault-noncurve Can
Return Incorrect Price
Design Low Version 10 Risk Accepted

CS-CRVUSD-055

In CryptoFromPoolVault_noncurve, _raw_price() returns the following:

p_collateral * VAULT.convertToAssets(10**18) / p_borrowed

As VAULT.convertToAssets(10**18) is expected to return a price in 18 decimals, if the VAULT's
underlying token and share token do not have the same number of decimals, the price will be incorrect as
it would have a different amount of decimal.

That is because the price in 18 decimals of a share in assets is defined as:

VAULT.convertToAsset(10 ** VAULT.decimals()) * 10 ** (18 - VAULT.asset().decimals())

which, assuming that the following holds for VAULT:

VAULT.convertToAssets(x) * 10 ** y == VAULT.convertToAsset(x * 10 ** y)

can be reduced to:

VAULT.convertToAssets(10 ** (18 + VAULT.decimals() - VAULT.asset().decimals()))

Risk accepted:

Curve answered:

The noncurve oracle is a prototype to use as a code example rather than something to directly use in
prod directly.

Curve - Curve Stablecoin - ChainSecurity - © Decentralized Security AG 26

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Open Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 1

• Code CorrectedFlashLender Can Be Drained

High -Severity Findings 3

• Code CorrectedChecks-effects-interactions Pattern and Reentrancy Locks

• Code CorrectedIncorrect Verification of Health Limit

• Code CorrectedOracle Price Updates Can Be Sandwiched

Medium -Severity Findings 14

• Code CorrectedBoostedLMCallback Can Be Reinitialized

• Code CorrectedUnsafe Approvals

• Code CorrectedIncorrect Conversion to Shares in exchange_dy()

• Code CorrectedIncorrect Receiver in exchange_dy()

• Code CorrectedIncorrect View Functions

• Code CorrectedMonetary Policy Incorrectly Shared by the Vaults in TwoWayLendingFactory

• Code CorrectedSurplus of dx Not Refunded When Using Factory Exchange Functions

• Code Correctedtransfer_in() Transfers in Incorrect Token

• Code CorrectedPegKeeper Can Be Drained if Redeemable Stablecoin Permanently Depegs

• Code CorrectedIncorrect Max Band

• Code CorrectedInterest Rate Does Not Compound

• Code CorrectedManipulation of Active Band

• Code CorrectedNon-Tradable Funds

• Code CorrectedPotential Denial of Service (DoS) Attack on Peg Keeper

Low -Severity Findings 27

• Code CorrectedInconsistent Access Control

• Code CorrectedInconsistent MIN_TICKS_UNIT Check

• Code CorrectedIncorrect NatSpec

• Code CorrectedBoostedLMCallback Is Not Compatible With Lending Factories

• Code CorrectedExtra Wei Can Be Maliciously Credited to Borrower Every Block

• Code CorrectedLiquidation Rounds Debt Toward 0

• Code CorrectedPool's Price Oracle Check Is Too Restrictive

• Code CorrectedA User's Liquidation Discount Can Be Updated by Anyone at Any Time

• Code CorrectedApplyNewAdmin Event Emitted With Wrong Argument in PegKeeper

• Code CorrectedDraining Funds

Curve - Curve Stablecoin - ChainSecurity - © Decentralized Security AG 27

https://chainsecurity.com

• Code CorrectedInaccurate _p_oracle_up(n) for High/Low Values of n

• Specification ChangedIncorrect Array Length

• Code CorrectedIncorrect Calculations in health_calculator

• Code CorrectedIncorrect Comments

• Specification ChangedMeaningful Revert Reasons

• Code CorrectedMissing Sanity Checks

• Code CorrectedMultiple Calls to the AMM

• Code CorrectedNo Events

• Code CorrectedNon-Indexed Events

• Code CorrectedPotential Optimization With Immutable PriceOracle

• Code CorrectedPotentially Incorrect Admin Fees

• Code CorrectedSimpler Calculations Possible

• Code CorrectedSuperfluous Check

• Code CorrectedSuperfluous Interface Definitions

• Code CorrectedSuperfluous Variable Assignment for Number of Bands

• Code CorrectedUnnecessary Subtraction

• Code CorrectedUnused Variable in Stableswap

Informational Findings 1

• Code CorrectedCondition for Fetching New Rate Is Always True

6.1 FlashLender Can Be Drained
Security Critical Version 12 Code Corrected

CS-CRVUSD-065

To ensure that a loan has been repaid, the FlashLender checks after the callback that the new balance
of the contract is equal to the balance before loaning the crvUSD. In case there is an active governance
proposal to increase the debt ceiling of the FlashLender, this check can be abused by executing the
proposal instead of repaying the loan.

In the following, we assume the current debt ceiling of the FlashLender is 1M crvUSD and that a
governance proposal has being voted to increase the debt ceiling of the FlashLender to 2M crvUSD,
but the proposal has not yet been executed on-chain.

1. A malicious actor calls FlashLender.flashLoan() to borrow 1M crvUSD.

2. As part of the callback receiver.onFlashLoan(), the receiver then calls the Voting
Ownership's executeVote() to execute the action which will eventually calls the
ControllerFactory.set_debt_ceiling() function, that will mint an additional 1M crvUSD to
the FlashLender contract.

3. The malicious actor then returns from the onFlashLoan() callback without repaying the 1M
crvUSD borrowed, and the FlashLender contract will not revert as its current balance is 1M
crvUSD due to the increase of the debt ceiling.

Code corrected:

Curve - Curve Stablecoin - ChainSecurity - © Decentralized Security AG 28

https://chainsecurity.com

The post-callback check has been updated to:

assert ERC20(CRVUSD).balanceOf(self) >= FACTORY.debt_ceiling_residual(self), "FlashLender: Repay failed"

Where FACTORY.debt_ceiling_residual() returns the debt of the FlashLender in crvUSD.

This means that if the borrower did not repay the entire loan and:

• Called set_debt_ceiling() in the callback to increase the debt ceiling by diff, the check will
fail as the balance of the FlashLender will be increased by diff, but so would be the
debt_ceiling_residual.

• Called set_debt_ceiling() or rug_debt_ceiling() in the callback to decrease the debt
ceiling, the check will fail as:

• Either the FlashLender had some crvUSD at the moment of the call and the call burned
diff tokens, which is reflected in debt_ceiling_residual.

• Or the FlashLender had no crvUSD at the moment of the call and the call do not perform
any action.

6.2 Checks-effects-interactions Pattern and
Reentrancy Locks
Design High Version 1 Code Corrected

CS-CRVUSD-015

Some external calls to the collateral token deviate from the checks-effects-interactions pattern. If no
reentrancy lock is present, these calls might introduce reentrancy possibilities (especially read
reentrancies) before the state is fully updated. We could not find a case where the non-updated state
might be relevant information. Still, it might be worth considering fully adhering to the
checks-effects-interactions pattern.

For example,

• in AMM.exchange(), the transfer is done before the bands are updated;

• in AMM.withdraw(), the old rate information would still be returned;

• in Controller.create_loan(), the intermediate stable coin balance is returned.

The Reentrancy locks appear to be set inconsistently. We at least cannot see the underlying logic of how
they are added. Some admin setters have a nonreentrant decorator and some do not.

For important functions like exchange the decorator seems to be forgotten after a code change. For this
reason, the issue was rated higher.

Code corrected:

The missing reentrancy lock on exchange() has been added. Some missing reentrancy locks have
been explained. All but one of the remaining external functions without locks seem to be safe even
without a lock.

The Controller's total_debt() function will return outdated / inconsistent values compared to the
AMM's state if called during the callback of repay_extended and _liquidate. More precisely, the
AMM's state will already reflect the withdrawal / liquidation, whereas the Controller's state has not yet
been updated. It should be carefully considered if this might pose problems for integrators or third-party
contracts interacting with the Controller.

Curve - Curve Stablecoin - ChainSecurity - © Decentralized Security AG 29

https://chainsecurity.com

6.3 Incorrect Verification of Health Limit
Correctness High Version 1 Code Corrected

CS-CRVUSD-019

The _liquidate function checks whether the user's health is below a certain health limit. This health
limit is passed as the user's liquidation discount by liquidate (and 0 by self_liquidate). But the
health function already accounts for the user's liquidation discount and is supposed to return a value
below 0 when the liquidation can start.

Code corrected:

Curve fixed and identified this issue while the audit was ongoing.

6.4 Oracle Price Updates Can Be Sandwiched
Security High Version 1 Code Corrected

CS-CRVUSD-031

The AMM price range in a band (p_cd, p_cu) depends cubically on the oracle price p_o
(p_cd = \frac{p_o^3}{p_\uparrow^2}, p_cu = \frac{p_o^3}{p_\downarrow^2}). Since
trading can happen out of band, AMM price changes because of changes in p_o are greatly amplified for
bands far from the current oracle price. The previous consideration makes it profitable for an attacker to
leverage small oracle price increases by accessing the liquidity of low price bands. The attack scenario is
like this:

1. Stablecoin is exchanged for collateral, in a large amount such that the active band is shifted toward
lower prices bands

2. The oracle price is increased

3. part of the collateral obtained in step 1 is exchanged back at a higher price, recouping the
stablecoin and allowing the attacker to keep part of the collateral.

Since after a price update the AMM price will move the most for bands which have a low price compared
to the current oracle price (high collateral ratio), overcollateralized borrowers are most affected by this
issue. Positions that should be the safest might suffer the most losses from sandwiching, more than
supposedly "riskier" positions.

Code corrected:

A new dynamic fee has been introduced, such that the fee scales in the same amount as the theoretical
profit from sandwiching an oracle update.

6.5 BoostedLMCallback Can Be Reinitialized
Design Medium Version 12 Code Corrected

CS-CRVUSD-066

In BoostedLMCallback, the initialize function can be called to set the initial values of the amm,
inflation_rate and future_epoch_time variables. Given that the function is permissionless and
implements no logic to prevent reinitialization, it is possible for an attacker to call the function again later.

Curve - Curve Stablecoin - ChainSecurity - © Decentralized Security AG 30

https://chainsecurity.com

This could lead to unexpected behavior when the last call to _checkpoint_collateral_shares was
made in a previous epoch X compared to the current block timestamp which belongs to epoch X+1.

• By setting future_epoch_time to CRV.future_epoch_time_write(), the next call to
_checkpoint_collateral_shares() will not enter the following branch as it should have to
account for the old rate for the remaining of the epoch X that was not yet accounted for.

if prev_future_epoch >= prev_week_time and prev_future_epoch < week_time:
 # If we went across one or multiple epochs, apply the rate
 # of the first epoch until it ends, and then the rate of
 # the last epoch.
 # If more than one epoch is crossed - the gauge gets less,
 # but that'd mean it wasn't called for more than 1 year
 delta_rpc += rate * w * (prev_future_epoch - prev_week_time) / working_supply
 rate = new_rate
 delta_rpc += rate * w * (week_time - prev_future_epoch) / working_supply

• By setting inflation_rate to CRV.rate(), even if the first behavior described above was not an
issue, the rate to use for the remaining of epoch X (the "old" rate) would be the current rate instead
of the rate at epoch X.

Code corrected:

The contract was refactored to remove the initialize function and performs all the necessary setup in
the constructor.

6.6 Unsafe Approvals
Design Medium Version 12 Code Corrected

CS-CRVUSD-067

The system often call approve() on ERC20 tokens by using the interface
approve(_spender: address, _value: uint256) -> bool: nonpayable without using
default_return_value. In such cases, the execution will revert for token contracts that do not
respect the ERC20 standard such as USDT as there will not be enough return data to decode given that it
does not return a boolean.

Bellow is a list of such occurrences when the token is not known to be ERC20 compliant:

• Controller.__init__():

_borrowed_token.approve(msg.sender, max_value(uint256))

• TwoWayLendingFactory._create():

ERC20(borrowed_token).approve(amm, max_value(uint256))
ERC20(collateral_token).approve(vault_short.address, max_value(uint256))

...

ERC20(borrowed_token).approve(vault_long.address, max_value(uint256))
ERC20(collateral_token).approve(amm, max_value(uint256))

• LeverageZap1inch._approve():

Curve - Curve Stablecoin - ChainSecurity - © Decentralized Security AG 31

https://chainsecurity.com

ERC20(coin).approve(spender, max_value(uint256))

Code corrected:

The code was corrected by using the default_return_value kwarg for all mentioned approve()
calls.

6.7 Incorrect Conversion to Shares in
exchange_dy()
Correctness Medium Version 10 Code Corrected

CS-CRVUSD-036

In the TwoWayLendingFactory, exchange_dy() converts the given amount to shares when i == 1
using other_vault.convertToShares(amount), but amount represents the output token, which is
j == 0, so the borrowed token. The conversion should happen when i==0 instead, when amount
represents an amount of the other vault's underlying token.

6.8 Incorrect Receiver in exchange_dy()
Correctness Medium Version 10 Code Corrected

CS-CRVUSD-037

In TwoWayLendingFactory.exchange_dy(), when j==1, _receiver is set to msg.sender. This
means that the shares of the other vault obtained when exchanging the borrowed token will be directly
sent to the message sender, while they should instead first be redeemed before being sent to the
receiver, which is not necessarily the message sender.

6.9 Incorrect View Functions
Correctness Medium Version 10 Code Corrected

CS-CRVUSD-063

The following view functions of the Vault are incorrectly implemented:

• maxDeposit() which returns self.balanceOf[receiver] when the function should return
some amount of asset and not shares.

• maxMint() which passes self.balanceOf[receiver], an amount of shares to
self._convert_to_shares() which takes an amount of asset as argument.

Code corrected:

Both functions now return max_value(uint256).

Curve - Curve Stablecoin - ChainSecurity - © Decentralized Security AG 32

https://chainsecurity.com

6.10 Monetary Policy Incorrectly Shared by the
Vaults in TwoWayLendingFactory
Correctness Medium Version 10 Code Corrected

CS-CRVUSD-039

In TwoWayLendingFactory, a single monetary policy is deployed in _create(), and used to initialize
both vault_long and vault_short:

monetary_policy: address = create_from_blueprint(
self.monetary_policy_impl, borrowed_token, min_rate, max_rate, code_offset=3)

Since SemilogMonetaryPolicy takes borrowed_token as argument to calculate the interest rate, it
will perform correctly for vault_long, which lends the borrowed_token, but not for vault_short,
which lends collateral_token.

Code corrected:

Two monetary policies are now deployed in _create(), one for each vault.

6.11 Surplus of dx Not Refunded When Using
Factory Exchange Functions
Design Medium Version 10 Code Corrected

CS-CRVUSD-056

When calling OneWayLendingFactory.exchange(), or exchange() and exchange_dy() of the
TwoWayLendingFactory with i==0 and j==1, if the full amount dx passed to the AMM is not used,
the surplus is not refunded to the user. amm.exchange() can use less than the amount supplied as
argument if not enough liquidity is available.

Code corrected:

1. The function exchange() was removed from the OneWayLendingFactory.

2. The function exchange() and exchange_dy in the TwoWayLendingFactory were updated to
refund the surplus of dx to the user.

6.12 transfer_in() Transfers in Incorrect
Token
Correctness Medium Version 10 Code Corrected

CS-CRVUSD-042

TwoWayLendingFactory defines the function transfer_in that is used by exchange() and
exchange_dy() to transfer the tokens to be exchanged from the caller to the contract. In the case that
i==1, the token being transferred in is vault.collateral_token() (the share of the given vault)
instead of the underlying token of the other vault. This implies that the call to

Curve - Curve Stablecoin - ChainSecurity - © Decentralized Security AG 33

https://chainsecurity.com

other_vault.deposit(amount) will most likely revert as the factory does not have any underlying
token to be deposited into the other vault.

Code corrected:

The correct token is now transferred in when i == 1.

6.13 PegKeeper Can Be Drained if Redeemable
Stablecoin Permanently Depegs
Security Medium Version 5 Code Corrected

CS-CRVUSD-001

If one of the reference stablecoins depegs, for example USDC falls to p = $0.95, the price in the
corresponding StableSwap (crvUSD/USDC) will follow the external market price and also fall to $0.95.
The PegKeeper will then try to raise the price, by supplying crvUSD to the StableSwap pool. Essentially
the PegKeeper will try to keep USDC from depegging. This opens up the following arbitrage opportunity,
where p is the current market price of USDC:

The arbitrage profit depends on the liquidity available in all the pools. If the following (for the purpose of a
worst-case analysis) we assume no slippage for the arbitrageur. Assuming all pools have fee f, then the
arbitrage becomes profitable if the price p of the depegged stablecoin is:

p < − (f − 1)3

4f3 − 12f2 + 12f + 1

Currently, f = 0.0001 meaning that the arbitrage would become profitable for:

p < 0.998502
Assuming that the market price of the depegged stablecoin permanently falls to p, this arbitrage would
happen repeatedly until the PegKeeper has been drained. In this case the PegKeeper would suffer a loss
trying to prop up the price of the depegging stablecoin.

Furthermore, the PegKeeper would try to keep crvUSD pegged to a depegging stablecoin, which would
put the crvUSD price under pressure, but (assuming reasonably distributed liquidity) should not result in a
depegging.

Lastly, please note that as part of the arbitrage crvUSD would accumulate in the crvUSD/USDT pool, but
the PegKeeper of crvUSD/USDT pool would not be able to withdraw, due to the

assert p_agg <= 10**18

check, as p_agg would presumably be bigger than 10**18 due to the depegging stablecoin.

If the depegging is only temporary, meaning that the price recovers, then the PegKeeper was
temporarily drained, but should have made a profit in the process.

Curve - Curve Stablecoin - ChainSecurity - © Decentralized Security AG 34

https://chainsecurity.com

Theoretically, this issue could also exist in the opposite direction, with a stablecoin gaining value.
However, this seems less likely except for DAI in Maker endgame scenarios.

Code corrected:

In PegKeeperV2 at commit 5a46bb9c1f43b7d4062127b9919e3c2ed366ad34, which is object of
a separate ChainSecurity audit, the pegkeepers for different redeemable stablecoins interact and
communicate to each other limits on how much crvUSD can be supplied to a pool. In the case of a
single redeemable stablecoin depegging, the pegkeeping action on its pool will be limited.

6.14 Incorrect Max Band
Correctness Medium Version 1 Code Corrected

CS-CRVUSD-034

The AMM contract tracks the max_band variable. Bands above this band are empty. In the withdraw
function the max_band is potentially updated:

if self.max_band <= ns[1]:
 self.max_band = max_band

If this withdrawal emptied all the touched bands, then this update would set the max_band to 0. This
might be incorrect, as other non-empty bands might still exist inbetween.

As the max_band variable is used in calc_swap_out exchanges on the AMM might work incorrectly
because of this.

Code corrected:

max_band is now set to the last known band with non-empty coins in the withdrawing loop.

6.15 Interest Rate Does Not Compound
Correctness Medium Version 1 Code Corrected

CS-CRVUSD-002

The AMM contract has a function _rate_mul to compute the rate multiplier. The function simply adds the
rate multiplied by the time difference to the previous rate multiplier:

return self.rate_mul + self.rate * (block.timestamp - self.rate_time)

This approach, however, does not account for the compounding of interest over time. Linearly adding
interest could lead to significant underestimation of the accrued interest over time.

The code should be modified to include interest compounding in line with common financial practice.

Code corrected:

The calculation was updated in order to compound each time the _rate_mul function is called (though
the rate increases linearly over the time periods between these calls):

Curve - Curve Stablecoin - ChainSecurity - © Decentralized Security AG 35

https://chainsecurity.com

return unsafe_div(self.rate_mul * (10**18 + self.rate * (block.timestamp - self.rate_time)), 10**18)

6.16 Manipulation of Active Band
Security Medium Version 1 Code Corrected

CS-CRVUSD-020

It is possible to manipulate the active band. The lower the market liquidity the easier the manipulation is.
Multiple other parameters are depending on the active band and, hence, are also manipulated. The
manipulation is possible when liquidity which is in a band far above the current band, is reachable
through trading. And is done by manipulated deposits, paybacks and trades.

The consequences of this manipulation might be manifold. E.g.:

• Deposits which should still be possible are impossible because they would be below the
manipulated active band.

• The health ratio would be affected as it depends on the active band

• It could result in an active band that is more than 1024 + 50 away from the "true" active band.
"True" if the external price oracle is assumed to be the truth.

Code corrected:

It is now impossible to increase the distance between the active band and the oracle price further than 50
ticks. The active band is otherwise used as a reference point of the AMM, but its value does not affect
where loans are created or the value of their health ratio.

6.17 Non-Tradable Funds
Design Medium Version 1 Code Corrected

CS-CRVUSD-026

In case of a very small trade in a band far away from the active band, the funds might be inaccessible
through normal trading. It is caused by the new code in_amount_done == 0 change which fixes the
issue Draining funds but blocks the reversal trade now.

Code corrected:

Input amounts are now rounded up.

6.18 Potential Denial of Service (DoS) Attack on
Peg Keeper
Security Medium Version 1 Code Corrected

CS-CRVUSD-005

The PegKeeper contract contains a update function that imposes a delay of 15 minutes between
actions.

Curve - Curve Stablecoin - ChainSecurity - © Decentralized Security AG 36

https://chainsecurity.com

if self.last_change + ACTION_DELAY > block.timestamp:
 return 0

This design makes it susceptible to a potential Denial of Service (DoS) attack. A malicious actor could
effectively keep the PegKeeper occupied by directly rebalancing the stableswap pools, calling
update(), and then unbalancing the pools again within a single transaction. The PegKeeper would be
locked for the next 15 minutes, without having provided or withdrawn any amount of stablecoin. This
strategy could be performed by an actor seeking to destabilize the peg.

Code corrected:

PegKeeperV2, included at commit 5a46bb9c1f43b7d4062127b9919e3c2ed366ad34, which is in
the scope of a separate ChainSecurity audit, addresses this issue by preventing a pegkeeper update
when the spot price of the underlying pool is in disagreement with the oracle price of the pool by
more than 5 basis points.

6.19 Inconsistent Access Control
Correctness Low Version 12 Code Corrected

CS-CRVUSD-068

The functions user_checkpoint and claimable_tokens in BoostedLMCallback do almost the
same action except for the return value and the access restrictions. claimable_tokens is unrestricted
whereas user_checkpoint can only be called by the provided address or by the minter. this behavior
is inconsistent given they perform the same state transition.

Furthermore, it should be noted that claimable_tokens can be used to "kick" a user by updating the
user's boost and checkpoint them.

Code corrected:

Checks in user_checkpoint were removed, and the function was made unrestricted.

6.20 Inconsistent MIN_TICKS_UNIT Check
Correctness Low Version 12 Code Corrected

CS-CRVUSD-069

In the Controller contract, max_borrowable() checks that N >= MIN_TICKS_UINT and
N <= MAX_TICKS_UINT but min_collateral() only checks N <= MAX_TICKS_UINT. As a lower N
usually implies less collateral, checking the MIN_TICKS_UINT seems important in that context.

Code corrected:

The check for MIN_TICKS_UINT has been added to the min_collateral() function.

6.21 Incorrect NatSpec
Correctness Low Version 12 Code Corrected

Curve - Curve Stablecoin - ChainSecurity - © Decentralized Security AG 37

https://chainsecurity.com

CS-CRVUSD-071

Multiple NatSpec comments across the codebase are incorrect, missing or duplicated.

Additionally, the following NatSpec issues lead to an inconstant behavior of the compiler depending of
the compilation mode used (see Vyper Issue 3911), which could lead to issues for example when trying
to verify the contract on different platforms as they could use a different compilation mode than the one
used by Curve.

• Controller.repay(): _for is documented twice.

• BoostedLMCallback.__init__(): all parameter are appended with :.

• BoostedLMCallback._user_amounts(): user and @return are appended with :.

• BoostedLMCallback._checkpoint_user_shares(): user is appended with :.

• BoostedLMCallback.user_collateral(): user and @return are appended with :.

• BoostedLMCallback.working_collateral(): user and @return are appended with :.

• BoostedLMCallback.callback_user_shares(): user is appended with :.

Code corrected:

While several NatSpec comments are still missing, all NatSpec issues leading to an inconsistent behavior
of the compiler have been fixed.

6.22 BoostedLMCallback Is Not Compatible With
Lending Factories
Design Low Version 12 Code Corrected

CS-CRVUSD-073

The BoostedLMCallback is documented as being compatible with LlamaLend, however, in the
initialize() function, the contract calls FACTORY.get_amm(), which does not exist in the lending
factories as opposed to the ControllerFactory.

Code corrected:

The BoostedLMCallback now takes the AMM as a parameter in the constructor, and the
initialize() function has been removed.

6.23 Extra Wei Can Be Maliciously Credited to
Borrower Every Block
Security Low Version 10 Code Corrected

CS-CRVUSD-047

The _debt() internal function will round up the debt amount of a borrower if the debt has not been
updated that same timestamp.

Use ceil div
debt: uint256 = loan.initial_debt * rate_mul

Curve - Curve Stablecoin - ChainSecurity - © Decentralized Security AG 38

https://github.com/vyperlang/vyper/issues/3911
https://chainsecurity.com

if debt % loan.rate_mul > 0: # if only one loan -> don't have to do it
 if self.n_loans > 1:
 debt += loan.rate_mul
debt /= loan.rate_mul

An attacker can potentially increment the borrower debt by 1 wei every block, by calling
add_collateral() with a 1 wei collateral amount. This can be a problem if:

• 1 wei of collateral is much less valuable than 1 wei of borrowable.

• The network fees are low (such as on L2s).

• The block time is frequent.

• 1 wei of borrowable token has a high value.

For example, $22k (365 * 86400 * 1e-8 * $70e3) of extra debt per year can be credited to a
borrower of WBTC on Arbitrum (at BTC price $70K).

Code corrected:

The issue was addressed with the following assertion:

assert d_collateral * AMM.price_oracle() > 2 * 10**18 * BORROWED_PRECISION / COLLATERAL_PRECISION

which ensures that the worth of the added collateral is at least twice that of the wei of extra debt caused
by rounding.

6.24 Liquidation Rounds Debt Toward 0
Design Low Version 10 Code Corrected

CS-CRVUSD-051

In the function _liquidate of the Controller, the debt of the loan is updated as follow:

final_debt: uint256 = debt
debt = unsafe_div(debt * frac, 10**18)
assert debt > 0
final_debt = unsafe_sub(final_debt, debt)

The unsafe_div will always round toward 0.

On the other side, the amounts of borrowed and collateral tokens to be withdrawn from the AMM contract
are obtained as follows:

xy: uint256[2] = AMM.withdraw(user, self._get_f_remove(frac, health_limit))

In the case the computation of debt rounds down while the computation of xy does not round down as
much, the liquidator might be able to withdraw some amount of collateral that will leave the loan with bad
debt as the debt being repaid is insufficient.

This situation can be made more profitable for the liquidator in the case the borrowable token has a high
value-per-wei as the 1 wei that is not repaid is worth a lot.

Code corrected:

Curve - Curve Stablecoin - ChainSecurity - © Decentralized Security AG 39

https://chainsecurity.com

The division is now rounded up.

6.25 Pool's Price Oracle Check Is Too Restrictive
Design Low Version 10 Code Corrected

CS-CRVUSD-064

In both the OneWayLendingFactory and the TwoWayLendingFactory, when creating lending
markets using an existing oracle Curve pool as a price oracle, the following check is performed:

if N == 2:
 assert Pool(pool).price_oracle() > 0, "Pool has no oracle"
else:
 assert Pool(pool).price_oracle(0) > 0, "Pool has no oracle"

This check is used to ensure that the given pool has a price oracle, however, it assumes that pools with 2
tokens always have a price oracle function with the signature price_oracle(). This is not always the
case as stableswap-ng pools have the signature price_oracle(uint256) for the price oracle, even
when the pool has 2 tokens.

Code corrected:

Version 11The check has been removed in .

6.26 A User's Liquidation Discount Can Be
Updated by Anyone at Any Time
Security Low Version 1 Code Corrected

CS-CRVUSD-006

The repay function allows anyone to repay any loan — even just partially. This function will also update
the liquidation discount of the user who has taken the loan to the current liquidation discount. This implies
that someone can repay a tiny amount for another user's loan just to change their liquidation discount. In
the case where the liquidation discount has increased significantly since the loan was taken, this will be
disadvantageous to the borrower. Conversely, borrowers can update their liquidation discounts to their
advantage. The liquidation discount can also be updated by adding collateral.

Code corrected:

Only the debt owner can repay in such a way that their position becomes or stays unhealthy. Moreover,
the liquidation_discount of a position is only updated if the debt owner is the message sender.

6.27 ApplyNewAdmin Event Emitted With Wrong
Argument in PegKeeper
Correctness Low Version 1 Code Corrected

CS-CRVUSD-007

Curve - Curve Stablecoin - ChainSecurity - © Decentralized Security AG 40

https://chainsecurity.com

The __init__ constructor function of a PegKeeper emits a ApplyNewAdmin(msg.sender) event.
However msg.sender is not necessarily the contract admin, which is specified as the _admin
constructor argument.

Code corrected:

The _admin constructor argument is now emitted in the event.

6.28 Draining Funds
Security Low Version 1 Code Corrected

CS-CRVUSD-016

It is possible to drain 1 WEI per trade from the exchange when a loan is present. Simply by trading back
and forth with a very small amount. On Ethereum, the transaction cost should always outweigh the
drained WEI.

Code corrected:

in amounts are now rounded up.

6.29 Inaccurate _p_oracle_up(n) for High/Low
Values of n
Correctness Low Version 1 Code Corrected

CS-CRVUSD-008

The AMM contract implements the _p_oracle_up function, which performs numerical computations to
determine its return value. The maximum and minimum values of the power variable (which is derived
from the parameter n) are constrained by assert statements.

However, these bounds are too permissive, allowing extreme values of n to pass through, leading to
potential issues. When the value of n is excessively high or low, the output of the _p_oracle_up
function can result in collisions (identical results for different n) or return a value of 0.

For example, when n = 4124, the function returns 0. It does not revert until n = 4193.

The AMM expects non-zero prices, and non-overlapping bands. The bounds on the possible input values
for _p_oracle_up should therefore be narrowed.

Code corrected:

The result of the exponential is asserted to be more than 1000, corresponding to a maximum value of
n = 3436.

6.30 Incorrect Array Length
Correctness Low Version 1 Specification Changed

CS-CRVUSD-017

Curve - Curve Stablecoin - ChainSecurity - © Decentralized Security AG 41

https://chainsecurity.com

The Stableswap contract needs to be initialized with a _coins array of length 4. However, only two
values are needed (and can be used), as the maximum number of coins is two.

Specification changed

Curve explained this is intentional to keep compatibility with the factory.

6.31 Incorrect Calculations in
health_calculator
Design Low Version 1 Code Corrected

CS-CRVUSD-018

When calculating the health factor in Controller.health_calculator, the collateral value for a
non-converted deposit is calculated as follows:

collateral = convert(xy[1], int256) + d_collateral
n1 = self._calculate_debt_n1(xy[1], convert(debt, uint256), N)

As the function wants to predict the health ratio after the collateral change, n1 should be calculated with
d_collateral included and not on the present value xy[1]. Later, p0 is calculated to convert the
collateral into stablecoins. But this is only needed if ns[0] > active_band. The following code block
might be written into the first condition checking ns[0] > active_band:

Code corrected:

The calculation of n1 has been corrected.

6.32 Incorrect Comments
Correctness Low Version 1 Code Corrected

CS-CRVUSD-009

The following comments contain inaccuracies:

• The NatSpec of function withdraw says: Withdraw all liquidity for the user.
However, partial withdrawals are also possible.

• The NatSpec of function _get_dxdy says that parameter amount is an amount of input coin. In
fact, amount could specify either an input or an output amount, depending on the function
parameter is_in.

Fixed:

The NatSpec have been edited to reflect the actual behavior of the functions.

6.33 Meaningful Revert Reasons
Design Low Version 1 Specification Changed

Curve - Curve Stablecoin - ChainSecurity - © Decentralized Security AG 42

https://chainsecurity.com

CS-CRVUSD-021

Multiple asserts do not throw a revert reason, making it hard to determine where the code failed while
debugging. Additionally, many revert messages are quite short. E.g.,
assert xy[0] >= min_x, "Sandwich". It might be clear to developers but might cause some
confusion for anyone else reading the message (e.g., just "Sandwich") as a revert reason. Technically,
the error is also not necessarily caused by a sandwich attack.

Specification changed

The "Sandwich" revert message was renamed to "Slippage". Curve explained that the contract is close to
the bytecode limit. The chosen revert messages are the trade-off between bytecode limit and meaningful
reverts.

6.34 Missing Sanity Checks
Design Low Version 1 Code Corrected

CS-CRVUSD-022

The following functions set important parameters but have no sanity checks for the arguments. Even
though some are permissioned and called by a trusted account, sanity checks might prevent accidents.
E.g.:

In ControllerFactory:

• __init__

• add_market performs no checks for debt_ceiling.

• set_admin

• set_debt_ceiling

In AggMonetaryPolicy:

• __init__ .. corrected

• setRate .. corrected

• setAdmin

• ConstantMonetaryPolicy has no checks in the setters.

In CryptoWithStablePrice

• __init__ for ma_exp_time .. corrected

In PegKeeper:

• __init__ the _receiver and _caller_share

In the AMM contract:

• __init__

• set_rate might be a problem when no check in the policy was done.

• create_loan might fail earlier for no amounts.

In Stableswap

• exchange could perform checks to fail early.

Some sanity checks might be a trade-off between security and performance.

Curve - Curve Stablecoin - ChainSecurity - © Decentralized Security AG 43

https://chainsecurity.com

Code corrected:

Some of the missing sanity checks were fixed by Curve independently while the audit was ongoing. We
assume the issue raised awareness and the sanity checks were added as intended by Curve.

6.35 Multiple Calls to the AMM
Design Low Version 1 Code Corrected

CS-CRVUSD-023

In Controller repay and health_calculator, there is the following loop:

for i in range(MAX_SKIP_TICKS):
 if AMM.bands_x(active_band) != 0:
 break
 active_band -= 1

This loop might be executed inside of the AMM contract to avoid an external call in each iteration.

Code corrected:

The loop execution was moved from the Controller to the AMM.

6.36 No Events
Design Low Version 1 Code Corrected

CS-CRVUSD-024

The following functions perform an important state change but don't emit an event.

• In ControllerFactory: set_admin, set_implementations, set_debt_ceiling,
rug_debt_ceiling

• ConstantMonetaryPolicy: Does not emit any events at all.

• PegKeeper: Functions that apply and commit admin, commit and apply new receiver and
set_new_caller_share .. corrected

Code corrected:

While the audit was ongoing some events have been added. Without specification, it is unclear which
events are intended. We assume the issue raised awareness and all events have been added as
intended.

6.37 Non-Indexed Events
Design Low Version 1 Code Corrected

CS-CRVUSD-025

Curve - Curve Stablecoin - ChainSecurity - © Decentralized Security AG 44

https://chainsecurity.com

Multiple events allow no filtering for a specific address as they miss indexing. This includes the following
examples:

• All events in ControllerFactory

• SetPriceOracle in AMM

• Multiple events in the AggMonetaryPolicy

• AddPricePair in AggregateStablePrice

• Multiple events in PegKeeper

• SetMonetaryPolicy in Controller

Version 12As of , the UpdateLiquidityLimit event in BoostedLMCallback does not index any
field.

Code corrected:

Curve indexed all relevant events.

6.38 Potential Optimization With Immutable
PriceOracle
Design Low Version 1 Code Corrected

CS-CRVUSD-013

The AMM contract declares price_oracle_contract as a public storage variable. This address is
accessed frequently and cannot be replaced in the current implementation.

However, this public declaration results in a storage access each time the price_oracle_contract is
accessed. Since this is a frequent operation and price_oracle_contract cannot be overwritten,
typing it as an immutable variable could have significant effects on overall gas usage.

Code corrected:

The price_oracle_contract variable is now declared immutable.

6.39 Potentially Incorrect Admin Fees
Design Low Version 1 Code Corrected

CS-CRVUSD-027

In AMM.exchange the following check is done before the in and out amounts are transferred:

if out_amount_done == 0:
 return 0

If the trade does not return any tokens, the function returns 0 but does not revert. Before that point, the
state variables admin_fees_x and admin_fees_y are incremented.

When testing, we could not get the system into the desired state. Therefore, we list this as a more
theoretical low-severity issue.

Curve - Curve Stablecoin - ChainSecurity - © Decentralized Security AG 45

https://chainsecurity.com

Code corrected:

The admin fees are updated after the potential zero return.

6.40 Simpler Calculations Possible
Design Low Version 1 Code Corrected

CS-CRVUSD-014

In the AMM's get_xy_up function, some calculations can be simplified to save gas:

1. The calculation for p_current_mid:

p_current_mid: uint256 = unsafe_div(unsafe_div(p_o**2 / p_o_down * p_o, p_o_down) * Aminus1, A)

This is equivalent to the simpler formula:

pmid = po
3

p ↓ p ↑

2. The calculations for y_o and x_o in the general case:

y_o = unsafe_sub(max(self.sqrt_int(unsafe_div(Inv * 10**18, p_o)), g), g)
x_o = unsafe_sub(max(Inv / (g + y_o), f), f)

These equations can be simplified to the following expressions:

yo = Ay0(1 − p ↓
po

)

xo = Ay0po(1 − po
p ↑

)

Code corrected:

Both suggestions have been implemented.

6.41 Superfluous Check
Design Low Version 1 Code Corrected

CS-CRVUSD-029

Under the assumption that the AMM is always called by the controller, the following checks in
AMM.deposit_range are not needed because the controller will pass them in ascending order:

band: int256 = max(n1, n2)
lower: int256 = min(n1, n2)

Code corrected:

The checks have been removed as the controller passes sorted values to the AMM.

Curve - Curve Stablecoin - ChainSecurity - © Decentralized Security AG 46

https://chainsecurity.com

6.42 Superfluous Interface Definitions
Design Low Version 1 Code Corrected

CS-CRVUSD-028

• In Stableswap Factory.convert_fees

The following interface definitions are not needed and could be removed:

• In Controller LLAMMA.get_y_up is unused.

• In Stablecoin the Controller.admin interface is unused.

• In AMM the ERC20's balanceOf function is unused.

• The AggMonetaryPolicy and AggregateStablePrice contracts implement the ERC20
interface but do not use it.

• AggregateStablePrice does not use the balances definition of Stableswap

• PegKeeper does not use StableAggregator.stablecoin and CurvePool.lp_token an
ERC20.balanceOf

• In Controller LLAMMA.get_base_price and ERC20.totaSupply

• In ControllerFactory ERC20.transferFrom

Version 12

• In BoostedLMCallback the GaugeController interface's defines period_write,
period_timestamp and voting_escrow which are not used.

• In BoostedLMCallback, Minter.token() and Minter.controller() are unused.

• In Controller, LLAMA.admin_fees_x(), LLAMA.admin_fees_y(),
LLAMA.reset_admin_fees() and LLAMA.set_admin_fee() are unused.

Code corrected:

Version 12Curve removed all unused definitions except for the ones reported as of .

6.43 Superfluous Variable Assignment for
Number of Bands
Design Low Version 1 Code Corrected

CS-CRVUSD-030

In AMM.deposit_range() the variable n_bands is defined as:

i: uint256 = convert(unsafe_sub(band, lower), uint256)
n_bands: uint256 = unsafe_add(i, 1)

The variable dist is defined as

dist: uint256 = convert(unsafe_sub(upper, lower), uint256) + 1

and upper: int256 = band.

Curve - Curve Stablecoin - ChainSecurity - © Decentralized Security AG 47

https://chainsecurity.com

Code corrected:

The redundant calculation was removed.

6.44 Unnecessary Subtraction
Design Low Version 1 Code Corrected

CS-CRVUSD-032

In Controller.__init__, the variable Aminus1 is set to _A - 1. Later in the code Aminus1 is not
used but recalculated as _A - 1.

Code corrected:

The calculation is now done once in __init__ and the variable Aminus1 is reused in the code.

6.45 Unused Variable in Stableswap
Design Low Version 1 Code Corrected

CS-CRVUSD-033

In Stableswap we found EXP_PRECISION which is not used in the contract anymore.

Code correct

The unused variable EXP_PRECISION has been removed.

6.46 Condition for Fetching New Rate Is Always
True
Informational Version 12 Code Corrected

CS-CRVUSD-087

The function _checkpoint_collateral_shares() fetches the new future epoch and current rate
from the CRV token contract when the following condition is met: prev_future_epoch >= I_rpc.t.

This condition, under normal circumstances (the gauge is called at least once a year), will always be true.
I_rpc.t correspond to the last time _checkpoint_collateral_shares() was called, and
prev_future_epoch to the future epoch timestamp, at the time of the last call: I_rpc.t. Since by
definition of the function future_epoch_time_write() the future epoch timestamp is always greater
than the current time, the prev_future_epoch cached in the inflation params at time I_rpc.t will
always be greater than or equal to I_rpc.t.

Code corrected:

The condition was changed to block.timestamp >= prev_future_epoch.

Curve - Curve Stablecoin - ChainSecurity - © Decentralized Security AG 48

https://chainsecurity.com

7 Informational
We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1 Receiver Can Receive Dx When Exchanging in
TwoWayLendingFactory
Informational Version 14

CS-CRVUSD-086

In the TwoWayLendingFactory, when calling exchange() or exchange_dy(), it could be that the
entire amount of input token provided by the caller is not consumed. In this case, the leftover tokens are
sent to the receiver and not back to the caller. If the receiver and the caller are different, this could be an
issue as the caller might expect to receive the leftover tokens, or the receiver could not be able to handle
them.

7.2 Events Lack Caller Information
Informational Version 12

CS-CRVUSD-076

Although it is now possible to interact with the controller for someone else's loan, the different events do
only log the touched loan's owner, but not the address that made the call, this includes:

• Repay()

• Borrow()

• RemoveCollateral()

7.3 Inconsistent Bypass of Controller Approval
Informational Version 12

CS-CRVUSD-077

The Controller allow loan owner to give approval to another address to interact with their loan.
Additionally, only in the case of create_loan() or create_loan_extended(), an address without
approval may interact with the loan only if tx.origin is the loan owner. Other functionalities require the
caller to have approval.

7.4 Misleading set_implementations()
Informational Version 12

CS-CRVUSD-078

In OneWayLendingFactoryL2, the function set_implementations() is documented as allowing to
set new implementations (blueprints) for various contracts. However, it can also set the
gauge_factory, which is not a blueprint.

Curve - Curve Stablecoin - ChainSecurity - © Decentralized Security AG 49

https://chainsecurity.com

7.5 Reused Callback Signature
Informational Version 12

CS-CRVUSD-079

The different _extended() functions of the controller can call a callback function in another contract.
The signature is specific to the functionality of the controller being used (for example CALLBACK_REPAY
for repay_extended()). This is not the case for borrow_more_extended() which reuses
CALLBACK_DEPOSIT and CALLBACK_DEPOSIT_WITH_BYTES already used by
create_loan_extended().

7.6 Trust Assumption of the Controller
Approval Mechanism
Informational Version 12

CS-CRVUSD-080

The Controller allows for loan holder to give approval to addresses to allow them to interact with their
loan. It should be noted that such approved address can extract value from the loan holder, and should
be hence fully trusted.

For example, a malicious approved address could use borrow_more_extended() to max up the loan
if it was not yet the case, without providing more collateral, and get the additional borrowed tokens as
they control the callbacker address.

7.7 Unreachable Functions in AMM
Informational Version 12

CS-CRVUSD-081

Version 12In , the logic to set and collect the AMM's admin fee has been removed from the Controller.
This means that AMM.set_admin_fee() and AMM.reset_admin_fees() are no longer reachable
and could be removed as the contract's admin cannot call them.

In the case the admin_fee will always be set to 0 at deployment of the AMM, the entire admin fee logic
could be removed from the contract. If admin_fee is not set to 0 at deployment, the admin fee will be
locked in the contract and cannot be retrieved.

7.8 Vyper Loops
Informational Version 12

CS-CRVUSD-082

Version 12As of , the codebase uses Vyper 0.3.10, this version of the language provides loops in the form
of:

for i: uint256 in range(stop, bound=N):
 ...

for i: uint256 in range(start, end, bound=N):
 ...

Curve - Curve Stablecoin - ChainSecurity - © Decentralized Security AG 50

https://chainsecurity.com

which improves readability compared to the following pattern used across the codebase:

for i in range(N):
 if i == stop:
 break
 ...

7.9 BoostedLMCallback Cannot Be Killed
Informational Version 12

CS-CRVUSD-083

As opposed to regular curve gauges, the BoostedLMCallback contract cannot be killed.

7.10 gauge_for_vault() Does Not Check That
the Vault Is From the Factory
Informational Version 12

CS-CRVUSD-084

In OneWayLendingFactoryL2, the function gauge_for_vault() return the gauge for a vault if it
exists, but there is no check that the provided vault has been deployed by the factory, and it could return
a gauge for a vault that was not deployed by that factory.

7.11 Admin Fee Can Be Set but Not Recovered
Informational Version 10

CS-CRVUSD-057

In the Controller for a lending market, the admin (the DAO) can potentially call
set_amm_admin_fee(). The admin fee accumulated by the AMM will however not be recoverable, as
Controller.collect_fees() will revert since FACTORY.fee_receiver() reverts for lending
markets, because FACTORY is a Vault that doesn't implement fee_receiver().

7.12 Gas Savings
Informational Version 10

CS-CRVUSD-058

• In TwoWayLendingFactory.transfer_out(), other_vault.redeem() is called even if the
shares to redeem are 0. The external call could be avoided in such cases.

• In both TwoWayLendingFactory._create() and OneWayLendingFactory._create(),
min_default_borrow_rate and max_default_borrow_rate are loaded from storage even in
the case they are overridden by min_borrow_rate and max_borrow_rate.

• In Controller._debt(), self.n_loans is loaded from storage, costing 2300 gas on every call.
n_loans will be bigger than 1 in almost every active market. Performing the rounding-up regardless
of n_loans can bring considerable gas savings.

Version 12As of :

Curve - Curve Stablecoin - ChainSecurity - © Decentralized Security AG 51

https://chainsecurity.com

• In BoostedLMCallback._update_liquidity_limit(), self.user_boost[user] is read
twice from storage.

• In BoostedLMCallback._checkpoint_collateral_shares(), prev_week_time is
rounded down to the start of the week before being passed as argument to
GAUGE_CONTROLLER.gauge_relative_weight(). This is done again in
gauge_relative_weight().

7.13 Mismatch Between Documentation and
Implementation, Typos
Informational Version 10

CS-CRVUSD-059

• The documentation of Controller._log_2() states the following although the function does not
allow the user to select the rounding direction:

An `internal` helper function that returns the log in base 2 of `x`, following the selected rounding direction

• The documentation of Controller.wad_ln() states the following although the function reverts if
given 0:

Note that it returns 0 if given 0.

• the documentation of Controller._debt() mentions updating the rate_mul counter, but it is a
view function:

Get the value of debt and rate_mul and update the rate_mul counter

• In TwoWayLendingFactory, the create() and create_from_pool() functions accept
borrowed_token and collateral_token arguments. The naming of these arguments is
inaccurate as the two tokens act both as borrowed and collateral.

The following typos were found:

• In OneWayLendingFactory and TwoWayLendingFactory set_default_rates() natspec:
"maxumum".

• In Controller.add_collateral natspec: "avoid bad liqidations".

• In OneWayLendingFactory and TwoWayLendingFactory set_implementations() natspec:
"polcy".

• In Vault.mint() natspec: "sharess".

Version 12The following additional mismatch and typos are present as of :

• In Vault.maxDeposit() and Vault.maxMint(), the notice states that the function returns inf
although it can now return different values based on maxSupply.

7.14 Missing View Function in the Factory
Informational Version 10

CS-CRVUSD-060

Curve - Curve Stablecoin - ChainSecurity - © Decentralized Security AG 52

https://chainsecurity.com

Both TwoWayLendingFactory and OneWayLendingFactory defines get_dx(), get_dy() and
get_dydx() that wrap the respective homonymous functions of the AMM. However, get_dxdy() is
missing.

7.15 Total Debt Is Potentially Lower Than the Sum
of User Debts
Informational Version 10

CS-CRVUSD-061

Even when operating in normal conditions, the total debt tracked by a Controller can be less than the
sum of the debts of all the borrowers. This can be explained by the total_debt update rounding down,
and being performed frequently, while the user debt updates round up and are performed rarely (more
time between updates implies more precision in accrued interest multiplier).

7.16 Unused Variables
Informational Version 10 Code Partially Corrected

CS-CRVUSD-062

• In TwoWayLendingFactory.transfer_out(), the variable token is assigned
ERC20(vault.collateral_token()) in the case i!=0 but the variable is not used in this
branch.

• In Controller, the use_eth argument of several methods is unused.

• In Controller, constant MAX_ETH_GAS is unused.

Version 12

• FlashLender defines fee but never uses it except via its public getter. This getter is not needed
according to EIP-3156.

Code partially corrected:

The use_eth arguments and MAX_ETH_GAS constant were removed from the Controller.

7.17 Magic Numbers and Constants
Informational Version 1 Code Partially Corrected

CS-CRVUSD-085

Some "magic numbers" are used in the code. For example, in ControllerFactory.vy, the collaterals
index is updated as follows:

for i in range(1000):
 if self.collaterals_index[token][i] == 0:
 self.collaterals_index[token][i] = 2**128 + N
 break

We recommend defining all such numbers as constants with clear names.

Curve - Curve Stablecoin - ChainSecurity - © Decentralized Security AG 53

https://chainsecurity.com

Ideally, how these constants are picked should also be described. For example, it was not clear how a
MAX_RATE of 43959106799 corresponds to 400% APY (as commented), or why MAX_TICKS = 50 and
MAX_SKIP_TICKS = 1024 are appropriate values.

Also, the number of decimals (10**18) is often hardcoded.

Code partially corrected:

MAX_RATE comment was changed to 300% to match the value.

Curve - Curve Stablecoin - ChainSecurity - © Decentralized Security AG 54

https://chainsecurity.com

8 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

8.1 Dirty Wipe
Note Version 1

The state variable AMM.user_shares is never completely cleared. Only the first values are emptied to
indicate the user has no shares anymore. The other values are not accessible but remain in storage until
they are overwritten. This is more gas efficient if the user wants to deposit again, and we could not find a
way to access the outdated values. Still, this might be worth keeping in mind as future code changes
might make the values accessible.

8.2 Exchange Does Not Revert if It Did Not
Succeed
Note Version 1

When exchanging on an empty LLAMMA or the desired token has no balance, there is no error message
for the exchange transaction.

8.3 Liquidate Callback Passes Address of the
Liquidated User
Note Version 1

In the Controller's _liquidate function, the execute_callback function is called with the user set as
the address being liquidated, not the liquidator (msg.sender). Special care has to be taken by callback
contracts to know the initiator of the liquidation.

8.4 Lost Dust Balance on Exchange
Note Version 1

In the presence of dust balances in an AMM band, the _get_y0() calculation can return 0. The
consequence is that the band content is not traded because f == 0 if dumping and g == 0 if pumping,
which causes the exchange code for the band in calc_swap_in and calc_swap_out to be skipped
even if some balance is present. When the DetailedTrade struct is inspected in _exchange(), it is
assumed no amount of out token is left in the bands between the trade start and the last band. This
means that the dust balance that was in the bands where _get_y0() == 0 is forgotten, and its value
becomes untransferable.

An example state for _get_y0() to equal 0 is
_get_y0(1, 1, int(1000e18), int(1000e18*1.01**1)) == 0.

As the client states, this doesn't prevent from trading over that band. The small amount of dust lost does
not affect the operation otherwise.

Curve - Curve Stablecoin - ChainSecurity - © Decentralized Security AG 55

https://chainsecurity.com

8.5 Max Band Over-Estimates the Actual Maximal
Band
Note Version 1

The max_band variable which tracks the maximum band of the AMM might not be decreased to the actual
maximum band with liquidity when liquidity is withdrawn. max_band only provides an upper bound on the
bands which could currently hold liquidity, but could overstate it. This has no visible effect except making
swaps that exhaust all the available liquidity more gas expensive.

8.6 Min Band Update
Note Version 1

The min and max band indicate in which range liquidity is provided. Everything above and below should
be empty. In withdraw the min and max bands are updated. In case a user who has liquidity in the
lowest ticks withdraws their liquidity, the min band is set to the former max band n[1] of this user.
Hence, min band guarantees that there is no liquidity below it but it's not the lowest band with liquidity.

Similarly, the max band will not be decreased if a single user owns all the liquidity in all of their bands,
and max_band == n[1]. In this case, max_band will not be changed when they withdraw their funds.

8.7 Peg Keeper Assumptions
Note Version 1

The Peg Keeper actions will always balance a pool. This implies a constant 1:1 target ratio, assuming
that no token loses its peg. Events have shown, however, that stablecoins can lose their peg and even
become quite volatile. It might be beneficial to have additional security mechanisms in place to monitor
and pause the actions of a peg keeper.

8.8 Read Only Reentrancy Protection for
Integrating Systems
Note Version 10

Integrators using the rate() view function of SemilogMonetaryPolicy should be aware that the
method is susceptible to read-only reentrancy, in case it is queried while the Controller is performing a
callback. Before querying rate(), Controller.check_lock() should be used.

8.9 Rebasing Tokens and Tokens That Transfer
Less Are Not Supported as Borrowable or
Collateral
Note Version 10

Curve - Curve Stablecoin - ChainSecurity - © Decentralized Security AG 56

https://chainsecurity.com

Curve Stablecoin does not support rebasing tokens as collateral or borrowable tokens. Indeed the AMM
assumes that the balances in each band do not change. For rebasing tokens, the balance accumulated
would be locked in the AMM. Furthermore, tokens that transfer less than the specified amount (such as
cUSDCv3, which transfers the balance of the caller when the transfer amount specified is
max(uint256)), are not supported, as the contracts assume that the whole amount specified in the
transfer() and transferFrom() calls are transferred if the calls succeed.

8.10 Rounding Decimals
Note Version 12

With allowing the pools to use tokens with decimals other than 18, rounding errors will happen. The
AMM's internal accounting artificially uses 18 decimals. This could be compared to assuming a discrete
series being continuous. But the controller and the subsequent transfers need to be done in the native
decimals. Thus, even though the AMM calculates with the highest precision possible, some values can
never be reached in reality. This might have manifold consequences. E.g., arbitrageurs will act with a
delay in reality.

8.11 Sandwiching Peg Keeper Actions
Note Version 1

The Peg Keeper acts on the simple condition of an unbalance pool combined with some sanity checks on
the post-price changes. As the pool balances can easily be manipulated with flash loans and the Peg
Keeper acts in a deterministic way without slippage protection, this action is prone to be sandwiched in
an attack. Yet, we could not think of a scenario that would directly hurt the audited system itself. In all
scenarios, the Peg Keeper will balance the pool in the "correct" direction (balancing the pool). This is
usually beneficial and not harmful to the system.

Even though the actions of the Peg Keeper should be monitored closely, it might be beneficial to add
security mechanisms to pause the Peg Keeper's actions and absolute investment limits instead of
relative ones.

8.12 Use of LLAMMA Price
Note Version 1

The LLAMMA price is easy to manipulate. The price and the functions AMM.get_p() and
Controller.amm_price (that return the price) should not — or very carefully — be used in any critical
operation. Especially, in third party contracts querying this information.

8.13 BoostedLMCallback Freezing Boost Can Be
Gamed
Note Version 12

The BoostedLMCallback contract prevents the boost of an user to be updated in the case they are soft
liquidated. This behavior can be gamed to abuse the boost without the possibility to be kicked.

1. Given a pool with low liquidity, a user open a loan over N bands with a small amount of collateral
such that they are the only user in the leftmost band of their loan.

Curve - Curve Stablecoin - ChainSecurity - © Decentralized Security AG 57

https://chainsecurity.com

2. The user trade the AMM to move the price to the leftmost band of their loan.

3. The user repeatedly trade within the band to increase the value of their shares (and hence the
collateral per share of the band).

4. The user trade the AMM back to its original state.

After those actions, the value of the user's loan is concentrated to the leftmost band, in case the
rightmost bands of their position are soft liquidated, the user boost will be frozen, while their amount of
collateral will not decrease greatly.

8.14 deploy_gauge() Is Unpermissioned
Note Version 10

In both the OneWayLendingFactory and TwoWayLendingFactory, deploy_gauge() is
unpermissioned, this means that if a Vault is created by an honest actor, a malicious actor could deploy a
gauge for this vault and have himself as this manager of the gauge. This would prevent an honest actor
from creating a gauge through the factory as only one can be created per Vault.

Curve - Curve Stablecoin - ChainSecurity - © Decentralized Security AG 58

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 Common Components
	2.2.1.1 Controller
	2.2.1.2 AMM (LLAMMA)

	2.2.2 Stablecoin Specific
	2.2.2.1 Stablecoin
	2.2.2.2 Collateral Token
	2.2.2.3 Oracle contracts
	2.2.2.4 Monetary Policy
	2.2.2.5 Peg Keeper
	2.2.2.6 Stable Swap
	2.2.2.7 Controller Factory

	2.2.3 Lending Specific
	2.2.3.1 System Architecture
	2.2.3.2 Lending Markets
	2.2.3.3 Vault
	2.2.3.4 Price Oracle
	2.2.3.5 CryptoFromPool
	2.2.3.6 CryptoFromPoolVault
	2.2.3.7 CryptoFromPoolVault_noncurve
	2.2.3.8 Monetary Policy
	2.2.3.9 Factories
	2.2.3.10 TwoWayLendingFactory

	2.2.4 Changes in
	2.2.5 Changes in
	2.2.6 Changes in and
	2.2.7 Changes in

	2.3 Trust Model

	3 Limitations and use of report
	4 Terminology
	5 Open Findings
	5.1 Bad Debt Is Not Socialized
	5.2 Low Decimals Tokens May Accumulate No Interest
	5.3 Oracle Manipulation on L2
	5.4 Vault pricePerShare Can Be Manipulated Downward
	5.5 Manipulable Price Calculation in AggregateStablePrice Method
	5.6 Inconsistent max_p_base Implementations
	5.7 Pure Functions Read Immutables
	5.8 FlashLender Does Not Check the Return Value of onFlashLoan()
	5.9 FlashLender Does Not Pull From the Lender
	5.10 Inflation of Vault Share Price Can Result in Unusable Price Oracle
	5.11 Underestimated Fee in get_amount_for_price
	5.12 previewRedeem() Does Not Always Behave the Same as redeem()
	5.13 Calling previewRedeem() Succeed When redeem() Would Revert
	5.14 Intermediate Currency Value Leakage
	5.15 Lending Market Could Reduce Oracle's Pool Liquidity
	5.16 Liquidation Feedback Loop for Illiquid Markets
	5.17 MAX_RATE Constant Too High in SemilogMonetaryPolicy
	5.18 Non-curve Vault Must Always Be the Collateral Token
	5.19 Vault Creation Lacks Sanity Checks
	5.20 CryptoFromPoolVault-noncurve Can Return Incorrect Price

	6 Resolved Findings
	6.1 FlashLender Can Be Drained
	6.2 Checks-effects-interactions Pattern and Reentrancy Locks
	6.3 Incorrect Verification of Health Limit
	6.4 Oracle Price Updates Can Be Sandwiched
	6.5 BoostedLMCallback Can Be Reinitialized
	6.6 Unsafe Approvals
	6.7 Incorrect Conversion to Shares in exchange_dy()
	6.8 Incorrect Receiver in exchange_dy()
	6.9 Incorrect View Functions
	6.10 Monetary Policy Incorrectly Shared by the Vaults in TwoWayLendingFactory
	6.11 Surplus of dx Not Refunded When Using Factory Exchange Functions
	6.12 transfer_in() Transfers in Incorrect Token
	6.13 PegKeeper Can Be Drained if Redeemable Stablecoin Permanently Depegs
	6.14 Incorrect Max Band
	6.15 Interest Rate Does Not Compound
	6.16 Manipulation of Active Band
	6.17 Non-Tradable Funds
	6.18 Potential Denial of Service (DoS) Attack on Peg Keeper
	6.19 Inconsistent Access Control
	6.20 Inconsistent MIN_TICKS_UNIT Check
	6.21 Incorrect NatSpec
	6.22 BoostedLMCallback Is Not Compatible With Lending Factories
	6.23 Extra Wei Can Be Maliciously Credited to Borrower Every Block
	6.24 Liquidation Rounds Debt Toward 0
	6.25 Pool's Price Oracle Check Is Too Restrictive
	6.26 A User's Liquidation Discount Can Be Updated by Anyone at Any Time
	6.27 ApplyNewAdmin Event Emitted With Wrong Argument in PegKeeper
	6.28 Draining Funds
	6.29 Inaccurate _p_oracle_up(n) for High/Low Values of n
	6.30 Incorrect Array Length
	6.31 Incorrect Calculations in health_calculator
	6.32 Incorrect Comments
	6.33 Meaningful Revert Reasons
	6.34 Missing Sanity Checks
	6.35 Multiple Calls to the AMM
	6.36 No Events
	6.37 Non-Indexed Events
	6.38 Potential Optimization With Immutable PriceOracle
	6.39 Potentially Incorrect Admin Fees
	6.40 Simpler Calculations Possible
	6.41 Superfluous Check
	6.42 Superfluous Interface Definitions
	6.43 Superfluous Variable Assignment for Number of Bands
	6.44 Unnecessary Subtraction
	6.45 Unused Variable in Stableswap
	6.46 Condition for Fetching New Rate Is Always True

	7 Informational
	7.1 Receiver Can Receive Dx When Exchanging in TwoWayLendingFactory
	7.2 Events Lack Caller Information
	7.3 Inconsistent Bypass of Controller Approval
	7.4 Misleading set_implementations()
	7.5 Reused Callback Signature
	7.6 Trust Assumption of the Controller Approval Mechanism
	7.7 Unreachable Functions in AMM
	7.8 Vyper Loops
	7.9 BoostedLMCallback Cannot Be Killed
	7.10 gauge_for_vault() Does Not Check That the Vault Is From the Factory
	7.11 Admin Fee Can Be Set but Not Recovered
	7.12 Gas Savings
	7.13 Mismatch Between Documentation and Implementation, Typos
	7.14 Missing View Function in the Factory
	7.15 Total Debt Is Potentially Lower Than the Sum of User Debts
	7.16 Unused Variables
	7.17 Magic Numbers and Constants

	8 Notes
	8.1 Dirty Wipe
	8.2 Exchange Does Not Revert if It Did Not Succeed
	8.3 Liquidate Callback Passes Address of the Liquidated User
	8.4 Lost Dust Balance on Exchange
	8.5 Max Band Over-Estimates the Actual Maximal Band
	8.6 Min Band Update
	8.7 Peg Keeper Assumptions
	8.8 Read Only Reentrancy Protection for Integrating Systems
	8.9 Rebasing Tokens and Tokens That Transfer Less Are Not Supported as Borrowable or Collateral
	8.10 Rounding Decimals
	8.11 Sandwiching Peg Keeper Actions
	8.12 Use of LLAMMA Price
	8.13 BoostedLMCallback Freezing Boost Can Be Gamed
	8.14 deploy_gauge() Is Unpermissioned

