

PUBLIC

Code Assessment

of the Fee Splitter

Smart Contracts

September 25, 2024

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 7

4 Terminology 8

5 Findings 9

6 Resolved Findings 10

7 Informational 13

Curve - Fee Splitter - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear Curve team,

Thank you for trusting us to help Curve with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of Fee Splitter according to
Scope to support you in forming an opinion on their security risks.

Curve implements fee splitter to distribute fees (in crvUSD token) from the crvUSD stablecoin markets to
different recipient according to configured weights.

The most critical subjects covered in our audit are denial of service, correct access control and correct
usage of the new Vyper modules. Security regarding all the aforementioned subjects is high.

In summary, we find that the codebase provides a high level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

Curve - Fee Splitter - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 5

• Code Corrected 5

Curve - Fee Splitter - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the Fee Splitter repository based on the
documentation files. The table below indicates the code versions relevant to this report and when they
were received.

fee-splitter

V Date Commit Hash Note

1 28 August 2024 581b8978f91e426c648cf6243420fee5276166b7 Initial Version

2 23 September 2024 59077063bfc658189ec02923cbc7f72dd3380084 Version 2

3 25 September 2024 74a06ef438e8aeb096f54041d54afe489cf92f67 Version 3

snekmate

V Date Commit Hash Note

1 26 June 2024 feb2dc084c7d817b0d93cbd533396881ba24bb30 snekmate v0.1.0

For the vyper smart contracts, the compiler version 0.4.0 was chosen.

The following contracts where included in scope:

fee-splitter:

• contracts/fee_splitter/Controller.vyi

• contracts/fee_splitter/ControllerFactory.vyi

• contracts/fee_splitter/ControllerMulticlaim.vy

• contracts/fee_splitter/DynamicWeight.vyi

• contracts/fee_splitter/FeeSplitter.vy

snekmate:

• src/snekmate/auth/ownable.vy

Version 2As of , the fee-splitter contracts were moved to the following locations:

• contracts/interfaces/IController.vyi

• contracts/interfaces/IControllerFactory.vyi

• contracts/interfaces/IDynamicWeight.vyi

• contracts/ControllerMulticlaim.vy

• contracts/FeeSplitter.vy

2.1.1 Excluded from scope
Anything not listed in the scope is considered out of scope. |

Curve - Fee Splitter - ChainSecurity - © Decentralized Security AG 5

https://github.com/curvefi/fee-splitter/tree/581b8978f91e426c648cf6243420fee5276166b7
https://github.com/curvefi/fee-splitter/tree/59077063bfc658189ec02923cbc7f72dd3380084
https://github.com/curvefi/fee-splitter/tree/74a06ef438e8aeb096f54041d54afe489cf92f67
https://github.com/pcaversaccio/snekmate//tree/feb2dc084c7d817b0d93cbd533396881ba24bb30
https://chainsecurity.com

2.2 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Curve offers a fee splitter to distribute fees (in crvUSD token) from the crvUSD stablecoin markets to
different recipient according to configured weights.

The FeeSplitter module contain the main logic of the system and uses two submodules ownable
and ControllerMulticlaim to delegate some logic. The contract defined one trusted role, the owner
which can edit the list of recipient and their weight. The state modifying entry points of the contract are
the following:

• ControllerMulticlaim.update_controllers() allow for anyone to update the set of
allowed controllers by fetching the new controllers not yet registered by the FeeSplitter from the
ControllerFactory.

• FeeSlitter.dispatch_fees() is the main entry point of the system. The unpermissioned
function allows for anyone to distribute the fees from a provided list of controllers which are ensured
to be approved by the system. If no list is provided, all approved controllers are used. The function
will first claim the fee from each controllers before transferring a fraction of the total to each
recipients according to their respective weight. In case a recipient defines a weight() function, the
weight is dynamically fetched from them and is capped by the weight defined by the owner. The
excess funds not claimed by dynamic recipient is sent to the last recipient of the list as excess.

• FeeSplitter.set_receivers() is only callable by the admin and allows to set the list of
recipients and their weight.

• ownable.transfer_ownership() allows the owner to transfer the ownership of the contract to
another address.

• ownable.renounce_ownership() allows the owner to renounce the ownership of the contract.

Calling the function dispatch_fees will be incentivized through the "hooker" infrastructure that is
already being used by Curve for the fee burners.

2.2.1 Trust Model

• The owner is fully trusted.

• Receivers are trusted not to behave maliciously.

• crvUSD, the ControllerFactory and the different Controller, are assumed to be the contract
defined by the curve stablecoin system (and not the curve lending system).

• It is assumed that the FeeSplitter is the fee_receiver of the ControllerFactory.

2.2.2 Changes in versions
Version 2 Version 3In and , the contract were updated to fix issues found during the audit, no new features

were added.

Curve - Fee Splitter - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

Curve - Fee Splitter - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

Curve - Fee Splitter - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

5 Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Design : Architectural shortcomings and design inefficiencies

• Correctness : Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 0

Curve - Fee Splitter - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 5

• Code CorrectedContradiction in Condition

• Code CorrectedIncorrect Interface

• Code CorrectedNon-Indexed Events

• Code CorrectedReceiver Can DoS the Distribution

• Code CorrectedMAX_CONTROLLERS Mismatch Between ControllerFactory and FeeSplitter

Informational Findings 2

• Code CorrectedUnused Interface

• Code CorrectedUnused Event

6.1 Contradiction in Condition
Design Low Version 1 Code Corrected

CS-CURVE_FEE_SPLITTER-001

In FeeSplitter._is_dynamic(), the condition len(response) > 32 is always false as
response is a Bytes[32].

Code corrected

The condition was removed from the contract.

6.2 Incorrect Interface
Correctness Low Version 1 Code Corrected

CS-CURVE_FEE_SPLITTER-002

The FeeSplitter defines DYNAMIC_WEIGHT_EIP165_ID as 0x12431234 which seems to be a
placeholder as commented above. It should be replaced with the actual interface ID intended for
DynamicWeight.

Code corrected

Curve - Fee Splitter - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

The placeholder has been replaced by the method id of weight().

6.3 Non-Indexed Events
Design Low Version 1 Code Corrected

CS-CURVE_FEE_SPLITTER-005

No parameters are indexed in the events of the FeeSplitter. It is recommended to index the relevant
event parameters to allow integrators and dApps to quickly search for these and simplify UIs.

Code corrected

The receiver of FeeDispatched is now indexed.

6.4 Receiver Can DoS the Distribution
Design Low Version 1 Code Corrected

CS-CURVE_FEE_SPLITTER-003

If a receiver implements EIP-165 and state that it supports the DYNAMIC_WEIGHT_EIP165_ID but in
reality either does not implement the function weight() or always revert when weight() is being
called, the FeeSplitter will not be able to distribute the fees until the owner removes them from the
receivers list.

Code corrected

As receiver are generally trusted, the receiver should never behave maliciously, however, to
accommodate with potential issue in the implementation of a receiver, the code was updated such that
when a call to weight() fails for some receiver, a LivenessProtectionTriggered event is emitted
and the receiver is skipped in the distribution.

6.5 MAX_CONTROLLERS Mismatch Between
ControllerFactory and FeeSplitter
Design Low Version 1 Code Corrected

CS-CURVE_FEE_SPLITTER-004

update_controller iterates over the new controllers added to the factory since the last time it was
called and updated the ControllerMulticlaim state with the new controllers. This is done with:

for i: uint256 in range(new_len - old_len, bound=MAX_CONTROLLERS):
 i_shifted: uint256 = i + old_len
 c: Controller = Controller(staticcall factory.controllers(i_shifted))
 self.allowed_controllers[c] = True
 self.controllers.append(c)

However, if more than MAX_CONTROLLERS controllers were added to the factory, the call will revert as
the loop's bound will be reached. This mean that it will be impossible to update the
ControllerMulticlaim with the new controllers afterwards. This could happen as the
ControllerFactory allows in theory up to 50000 controllers.

Curve - Fee Splitter - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

Code corrected

MAX_CONTROLLERS was updated to 50000 to match the ControllerFactory.

6.6 Unused Interface
Informational Version 2 Code Corrected

CS-CURVE_FEE_SPLITTER-011

IDynamicWeight.vyi is imported in FeeSplitter but never used. It could be removed.

Code corrected

IDynamicWeight.vyi is no longer imported in FeeSplitter.

6.7 Unused Event
Informational Version 1 Code Corrected

CS-CURVE_FEE_SPLITTER-007

In FeeSplitter, the event SetWeights is defined but never used.

Code corrected

The event was removed from the contract.

Curve - Fee Splitter - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

7 Informational
We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1 Loop Can Run Out of Gas
Informational Version 2 Acknowledged

CS-CURVE_FEE_SPLITTER-010

In the case update_controllers() is not called for a long time, and that a large number of controllers
have been deployed by the controller factory, it could be that calling update_controllers() is too
costly and would always revert. While it could be partially mitigated with access lists, there exists an
amount of controllers that would make the function revert always.

Acknowledged

Curve acknowledged the behavior and precised that the factory's controllers creation is under the control
of the DAO for minting markets.

7.2 Gas Savings
Informational Version 1 Code Partially Corrected

CS-CURVE_FEE_SPLITTER-006

The following gas optimization could be made:

1. In FeeSplitter.dispatch_fees(), several additions and subtractions could be made unsafe.

2. In FeeSplitter._set_receivers(), the weights addition could be made unsafe.

3. In ControllerMulticlaim.update_controller(), the for loop could be replaced with a
loop with the following pattern to avoid for computing i_shifted at each iteration:

for i in range(start, end, bound=N):
 ...

Code partially corrected

The for loop in update_controller() was replaced with a loop with the pattern described above.
The other optimizations were not implemented.

7.3 _is_dynamic Does Not Follow EIP-165
Informational Version 1 Acknowledged

CS-CURVE_FEE_SPLITTER-008

Curve - Fee Splitter - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

The function _is_dynamic does not follow the step described in EIP-165 to verify that the callee
implements EIP-165.

This includes ensuring that:

1. contract.supportsInterface(0x01ffc9a7). does not revert and returns true.

2. contract.supportsInterface(0xffffffff). does not revert and returns false.

The current checks are not sufficient to ensure that the callee implements EIP-165 and the Dynamic
weight interface as it could be a fallback function returning always true for example. The additional
checks does not rules any possibility of a false positive but decrease greatly the probabilities. Another
option that could be considered would be something similar to what is being used in EIP-3156 where the
called function must return some magic value.

Acknowledged

Curve acknowledged the behavior.

7.4 dispatch_fees Can Leave Dust
Informational Version 1 Acknowledged

CS-CURVE_FEE_SPLITTER-009

The function FeeSplitter.dispatch_fees might not transfer the entire balance of crvUSD to
receiver due to always rounding down when applying the weights. The dust will remain the contract and
can be used the next time the function is called.

Acknowledged

Curve acknowledged the behavior and documented it in the contract.

Curve - Fee Splitter - ChainSecurity - © Decentralized Security AG 14

https://eips.ethereum.org/EIPS/eip-165#how-to-detect-if-a-contract-implements-erc-165
https://eips.ethereum.org/EIPS/eip-3156
https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 Trust Model
	2.2.2 Changes in versions

	3 Limitations and use of report
	4 Terminology
	5 Findings
	6 Resolved Findings
	6.1 Contradiction in Condition
	6.2 Incorrect Interface
	6.3 Non-Indexed Events
	6.4 Receiver Can DoS the Distribution
	6.5 MAX_CONTROLLERS Mismatch Between ControllerFactory and FeeSplitter
	6.6 Unused Interface
	6.7 Unused Event

	7 Informational
	7.1 Loop Can Run Out of Gas
	7.2 Gas Savings
	7.3 _is_dynamic Does Not Follow EIP-165
	7.4 dispatch_fees Can Leave Dust

